ZAŁĄCZNIK 2

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Technologii i Inżynierii Chemicznej Katedra Chemii Nieorganicznej i Analitycznej

Grażyna Dąbrowska

Synteza nowych faz typu rutylu i trójrutylu tworzących się z udziałem tetratlenku diantymonu i ich fizykochemiczna charakterystyka

Autoreferat do wniosku o przeprowadzenie postępowania habilitacyjnego

Szczecin 2015

SPIS TREŚCI

1.	Dane osobowe habilitanta 3					
2.	Stopnie naukowe i tytuły zawodowe					
3.	Informacje o dotychczasowym zatrudnieniu					
4.	4. Osiągnięcia naukowe określone w art. 16 ust. 2 ustawy z dnia					
	14 marca 2003r. o stopniach naukowych i tytule naukowym	5				
	4.1. Tytuł osiągnięcia naukowego	5				
	4.2. Wykaz publikacji stanowiących osiągnięcie naukowe	6				
5.	Omówienie celu naukowego prac i osiągniętych wyników					
	wraz z omówieniem ich wykorzystania	7				
	5.1. Wprowadzenie	7				
	5.2. Cel i zakres badań	11				
	5.2.1. Sposób przygotowania i syntezy próbek	12				
	5.2.2. Zastosowane metody badawcze	13				
	5.3. Reaktywność α -Sb ₂ O ₄ z Cr ₂ O ₃	15				
	5.4. Układ trójskładnikowy $Cr_2O_3-\alpha$ -Sb ₂ O ₄ -MoO ₃	16				
	5.5. Układy trójskładnikowe $M_2O_3-\alpha$ -Sb ₂ O ₄ -V ₂ O ₅ (M = Cr, Fe, AI)	19				
	5.5.1. Układ $Cr_2O_3-\alpha$ -Sb ₂ O ₄ -V ₂ O ₅	19				
	5.5.2. Układy $Fe_2O_3 - \alpha - Sb_2O_4 - V_2O_5$ i $AI_2O_3 - \alpha - Sb_2O_4 - V_2O_5$	21				
	5.6. Substytucyjne ciągłe roztwory stałe o strukturze rutylu w pseudodwu-					
	składnikowych układach FeVSbO ₆ –CrVSbO ₆ i FeSnSbO ₆ –CrSnSbO ₆					
	5.6.1. Układ FeVSbO ₆ –CrVSbO ₆	24				
	5.6.2. Układ FeSnSbO ₆ –CrSnSbO ₆	27				
	5.7. Fazy o strukturze trójrutylu i ogólnym wzorze MSb_2O_6 (M = Zn, Cu)	31				
	5.7.1. Synteza i właściwości $ZnSb_2O_6$	31				
	5.7.2. Synteza i właściwości CuSb ₂ O ₆	33				
	5.7.3. Synteza i właściwości roztworu stałego ZnSb _{2-x} Ta _x O ₆	34				
	5.8. Podsumowanie wyników badań	36				
	5.9. Literatura	38				
6.	Omówienie pozostałych osiągnięć naukowo-badawczych	43				
7.	Działalność dydaktyczna 52					
8.	Działalność organizacyjna 52					

1. Dane osobowe habilitanta

Imię i nazwisko: Grażyna Dąbrowska

2. Stopnie naukowe i tytuły zawodowe

- magister inżynier chemik, specjalność Technologia Chemiczna Nieorganiczna

Stopień uzyskany na Wydziale Technologii i Inżynierii Chemicznej Politechniki Szczecińskiej (WTiICH PS) w dniu 9. lipca 1992 r. na podstawie pracy magisterskiej pt.: "Zastosowanie procesów membranowych: odwróconej osmozy i ultrafiltracji do oczyszczania wody i ścieków z Papierni Skolwin" wykonanej pod kierunkiem dr. hab. inż. Krzysztofa Karakulskiego, w Zakładzie Technologii Wody i Ochrony Atmosfery Instytutu Technologii Chemicznej.

- doktor nauk chemicznych w zakresie chemii

Stopień nadany uchwałą Rady Wydziału Chemii Uniwersytetu im. A. Mickiewicza w Poznaniu w dniu 15. grudnia 2000 r. na podstawie rozprawy doktorskiej pt.: "Studia nad układem Al₂O₃–V₂O₅–MoO₃", wykonanej pod kierunkiem prof. dr hab. inż. Marii Jolanty Kurzawy.

- dyplom kwalifikacji pedagogicznych do pracy nauczycielskiej

Dyplom uzyskany 30.06.1994 po ukończeniu dwuletniego Studium Pedagogicznego w Studium Doskonalenia Pedagogicznego Politechniki Szczecińskiej.

3. Informacje o dotychczasowym zatrudnieniu

Po ukończeniu studiów i uzyskaniu w roku 1992 stopnia magistra inżyniera chemika rozpoczęłam pracę na stanowisku asystenta w Zakładzie Chemii Nieorganicznej Instytutu Chemii Podstawowej Wydziału Technologii i Inżynierii Chemicznej Politechniki Szczecińskiej (aktualnie w strukturze Katedry Chemii Nieorganicznej i Analitycznej (KChNiA) Wydziału Technologii i Inżynierii Chemicznej Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie). Po uzyskaniu stopnia doktora nauk chemicznych przystąpiłam do konkursu na stanowisko adiunkta w Macierzystej Katedrze i na tym stanowisku jestem zatrudniona od kwietnia 2001 roku.

W ciągu swojej pracy zawodowej, w związku z urodzeniem trójki dzieci, trzykrotnie przebywałam na urlopach macierzyńskich i wychowawczych w następujących okresach:

- od 01.05.1996 do 30.09.1997 (16 miesięcy),

- od 28.12.2001 do 30.09.2003 (21 miesięcy),

- od 15.10.2005 do 30.09.2006 (11 miesięcy).

Łączna przerwa w świadczeniu pracy wynosiła 4 lata, co w odniesieniu do pracy badawczej było bardzo długim okresem. Po każdym moim powrocie z urlopów macierzyńsko-wychowawczych ponownie przeprowadzałam studia literaturowe w celu ustalenia stanu wiedzy dotyczącej interesującej mnie tematyki badawczej, w tym reaktywności α - i β-Sb₂O₄ z innymi tlenkami.

Przez cały czas pracy w Uczelni podnosiłam swoje kwalifikacje zawodowe. W 1994 roku uczestniczyłam w Szkole Analizy Termicznej organizowanej przez Polskie Towarzystwo Kalorymetrii i Analizy Termicznej, a w latach 1995–1998 w kursach dokształcających w ramach projektów TEMPUS:

- "Modern Methods of Preparation and Investigation in Material Science" (TEMPUS, S-JEP-11173-96),
- "Muncipal Solid Waste" (TEMPUS, S-JEP-09503-95),
- "Modern Safety Management & Sevesco II Directive" 1998 (TEMPUS, S-JEP-09503-95),
- "Course for teachers and staff members about strategies for identifying envi problems, from sources (emission) and in nature (immission)" (TEMPUS, S-JEP-09503-95).

W ramach projektu TEMPUS, S-JEP-11173-96 odbyłam także staż naukowy w Technische Universität w Berlinie, w Institut für Festkörperphysik w okresie 12–24.04.1999, w czasie którego zapoznałam się z metodami badań ciała stałego, w tym określania jego struktury.

4. <u>Osiągnięcie naukowe określone w art. 16 ust.2 ustawy z dnia 14 marca 2003r. o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz. U. Nr 65, poz. 595 ze zm.)</u>

4.1. Tytuł osiągnięcia naukowego

Osiągnięcie naukowe stanowi cykl 13 publikacji pod wspólnym tytułem:

"Synteza nowych faz typu rutylu i trójrutylu tworzących się z udziałem tetratlenku diantymonu i ich fizykochemiczna charakterystyka"

4.2. Wykaz publikacji stanowiących osiągniecie naukowe

Cykl publikacji stanowiących osiągnięcie naukowe zawiera 12 jednotematycznych artykułów naukowych, które wybrałam spośród 30 artykułów mojego autorstwa lub Ich łączny współczynnik oddziaływania (Impact Factor) z roku współautorstwa. opublikowania wynosi 18,244, a z wartości średnich pięcioletnich jest równy 23,191. Sumaryczna liczba punktów z listy czasopism MNiSzW z 2014 roku to 330. Dwa spośród tych artykułów to prace jednoautorskie. W przypadku pozostałych dziesięciu artykułów, oświadczenia współautorów, określające indywidualny wkład każdego z nich w powstanie poszczególnych prac, przedstawiono w załączniku 4, natomiast oświadczenia określające mój indywidualny wkład przedstawiono w załączniku 3 do tego wniosku. Ze względu na to, że w wyniku przeprowadzonych badań otrzymano nowe fazy o potencjalnych możliwościach aplikacyjnych, fazy te oraz sposób ich otrzymywania zgłoszono do ochrony patentowej w kraju (jeden patent i jedno zgłoszenie patentowe). Ten już udzielony patent włączono w cykl 13. jednotematycznych publikacji stanowiących osiągnięcie naukowe. Wyniki badań, stanowiących przedmiot rozprawy habilitacyjnej, przedstawiono ponadto w postaci 20 prezentacji podczas międzynarodowych i krajowych konferencji naukowych.

Zarówno przedmiot badań jak i ich wyniki, przedstawione w jednotematycznym cyklu publikacji, nie były przedmiotem mojej rozprawy doktorskiej.

Wykaz publikacji stanowiących osiągniecie naukowe przedstawiono w tabeli 1.

							
Artykuły w czasopismach z bazy Journal Citation Reports (z IF)							
Symbol	Dane bibliometryczne artykułu	IF*	IF pięcioletni (2014 rok)	Punktacja MNiSzW (2014 rok)			
H1	E. Filipek, M. Kurzawa, G. Dąbrowska , <i>"Initial studies on the oxide system</i> Cr_2O_3 - Sb_2O_4 ", J. Therm. Anal. Calorim., 60 (2000) 167–171	0,390	1,750	25			
H2	E. Filipek, M. Kurzawa, G. Dąbrowska , <i>"Solid solutions in the</i> $Cr_2O_3-\alpha$ - $Sb_2O_4-MoO_3$ system", J. Therm. Anal. Calorim., 64 (2001) 1105–1111	0,545	1,750	25			
H3	13 E. Filipek, G. Dąbrowska , "Synthesis and selected properties of $CrSbVO_6$ and phase relations in the V_2O_5 - Cr_2O_3 - α - Sb_2O_4 system in the solid state", J. Mater. Sci., 42 (2007) 4905–4915		2,320	30			
	(Charakterystyka XRD związku CrSbVO ₆ została opublikowana: E. Filipek, G. Dąbrowska , International Centre for Diffraction Data, nr 00-059-0869 (9.01.2009)						
H4	E. Filipek, G. Dąbrowska , "Unknown thermal properties of $ZnSb_2O_6$ and $Zn_7Sb_2O_{12}$ compounds. Reactivity of α -Sb ₂ O ₄ with ZnO on heating in air", J. Therm. Anal. Calorim., 94 (2008) 195–201	1,630	1,750	25			
H5	G. Dąbrowska , E. Filipek, <i>"Reactivity of the oxides in the ternary</i> V_2O_5 – CuO – α - Sb_2O_4 system in air", J. Therm. Anal. Calorim., 93 (2008) 839–845	1,630	1,750	25			
H6	E. Filipek, G. Dąbrowska , <i>"Phase relations up to solidus line in the part of the Sb–Zn–O system"</i> , Cent. Eur. J. Chem., 7(2) (2009) 192–196	1,065	1,260**	25			
H7	E. Filipek, G. Dąbrowska , M. Piz, <i>"Synthesis and characterization of new compound in the V–Fe–Sb–O system"</i> , J. Alloy. Compd., 490 (2010) 93–97	2,138	2,716	35			
H8	G. Dąbrowska , <i>"Synthesis and some properties of a new compound in the AI–Sb–V–O system</i> ", J. Therm. Anal. Calorim., 109(2) (2012) 745–749	1,982	1,750	25			
H9	E. Filipek, G. Dąbrowska , "New solid solution $Fe_{1-x}Cr_xVSbO_6$ with rutile-type structure", J. Alloy. Compd., 523 (2012) 102–107	2,390	2,716	35			
H10	H. Duda, E. Filipek, G. Dąbrowska , T. Groń, T. Mydlarz, " <i>Influence of Cr-substitution on the electrical properties of</i> <i>Fe</i> _{1-x} <i>Cr</i> _x <i>VSbO</i> ₆ ["] , Acta Phys. Pol. A, 124 (2013) 833–835	0,604	0,497	15			
H11	G. Dąbrowska , E. Flipek, M. Piz, "A new ceramic continuous solid solution in the CrSnSbO ₆ –FeSnSbO ₆	2,605	2,540	40			

	system and some of its properties", Ceram. Int., (2015), doi:10.1016/j.ceramint.2015.06.071 ("Fazy typu ciągłych roztworów stałych w czteroskładnikowym układzie tlenków metali oraz sposób wytwarzania nowych faz typu ciągłych roztworów stałych w czteroskładnikowym układzie tlenków metali" zostały zgłoszone do ochrony patentowej: E. Filipek, G. Dąbrowska , zgłoszenie patentowe nr P.400477, 23.08.2012)						
H12	G. Dąbrowska , "Reactivity of $ZnSb_2O_6$ with $ZnTa_2O_6$ and some properties of new limited $ZnSb_{2-x}Ta_xO_6$ solid solution with tri-rutile structure", Thermochim. Acta, 614 (2015) 62–67	2,184	2,392	25			
SUMA		18,244	23,191	330			
	Udzielone patenty						
H13	E. Filipek, G. Dąbrowska , "Fazy typu ciągłych roztworów stałych w poczwórnym układzie tlenków metali zawierające żelazo, chrom, antymon i wanad oraz sposoby wytwarzania nowych faz typu ciągłych roztworów stałych", PAT.220458, data udzielenia 03.11.2014						

 podano wartość IF z roku opublikowania (z wyjątkiem prac, które opublikowano w roku 2015, dla których podano wartość IF z roku 2014),

*- podano wartość IF 5-letni z roku 2013, gdyż od 2014 roku czasopismo Cent. Eur. J. Chem. zmieniło nazwę na Open Chemistry.

5. <u>Omówienie celu naukowego wyżej wymienionych prac i osiągniętych wyników wraz z omówieniem ich ewentualnego wykorzystania</u>

Autoreferat nie zawiera pełnego omówienia wyników badań uzyskanych i opisanych w tych 13 publikacjach stanowiących monotematyczną kompilację, ale stanowi ich streszczenie. Wszystkie szczegóły – dane liczbowe, tabele, równania, dane krystalograficzne dotyczące otrzymanych faz, jak również opis stosowanej metodologii, zawarte są w załączonych publikacjach. Publikacje wchodzące w skład rozprawy habilitacyjnej oznaczono pogrubionymi symbolami np. **[H-1]**. Pozostałe cytowane publikacje numerowano (liczby arabskie) według kolejności ich występowania w tekście.

5.1. Wprowadzenie

Przedmiotem badań opisanych w publikacjach stanowiących rozprawę habilitacyjną jest synteza i charakterystyka nowych faz typu rutylu i trójrutylu tworzących się z udziałem tetratlenku diantymonu w dwu- i trójskładnikowych układach tlenków.

Tetratlenek diantymonu (Sb₂O₄) jest najbardziej trwałym termicznie spośród wszystkich znanych tlenków antymonu [1]. Występuje w postaci dwóch odmian polimorficznych: niskotemperaturowej α -Sb₂O₄, krystalizującej w układzie rombowym, i wysokotemperaturowej β-Sb₂O₄, krystalizującej w układzie jednoskośnym [2]. W obu tych odmianach antymon występuje na +3 i +5 stopniu utlenienia i z tego względu część badaczy uważa, że ten tlenek należy do grupy soli i jest ortoantymonianem(V) antymonu(III). Stosunek Sb³⁺ do Sb⁵⁺ w odmianie α-Sb₂O₄ wg niektórych badaczy wynosi 0,91, a w odmianie β-Sb₂O₄ jest równy 0,98 [3, 4].

Wybierając tetratlenek diantymonu (Sb₂O₄) jako jeden ze składników badanych dwu- i trójskładnikowych układów tlenków kierowałam się przede wszystkim danymi literaturowymi [5–15], z których wynikało, że tlenki antymonu i to z antymonem na różnym stopniu utlenienia ze względu na swoje właściwości fizykochemiczne znajdują liczne zastosowania. Stosowane są m. in. jako środki zmniejszające palność w polimerach, farbach, powłokach i klejach [5, 6] oraz jako komponenty czujników wilgotności [7]. Nanocząstki tlenków antymonu ze względu na wysoki współczynnik załamania światła i wysoką odporność na ścieranie są stosowane jako materiały optyczne [8]. Tetratlenek diantymonu, jak i związki tworzące się z jego udziałem wykazują interesujące właściwości także katalityczne [9–15]. Sb₂O₄ znajduje zastosowanie jako promotor w mieszaninach tlenków używanych jako katalizatory w wielu reakcjach chemicznych, m. in. utleniania propanu do akrylonitrylu [9, 10], metanu do formaldehydu [11], toluenu do aldehydu benzoesowego [12] oraz siarkowodoru do siarki [13]. Katalizatory heterogeniczne, których skład może być opisany układem SnO₂–Sb₂O₄ lub FeSbO₄–Sb₂O₄ są aktywne w reakcji utleniania propenu do akroleiny [14, 15].

Z przeglądu danych bibliograficznych wynikało ponadto, że znane fazy o strukturze rutylu i trójrutylu, a tworzące się z udziałem Sb₂O₄ ze względu na ich interesujące właściwości elektryczne, magnetyczne, optyczne czy katalityczne znajdują zastosowania w wielu gałęziach przemysłu [16–26].

Struktura rutylu (układ tetragonalny, grupa przestrzenna P4₂/mnm, Z=2), tj. struktura analogiczna do struktury jednej z odmian polimorficznych TiO₂ (rys. 1a) składa się z łańcuchów oktaedrów MO₆, w których każdy oktaedr z kolejnym jest połączony poprzez wspólną parę przeciwległych krawędzi (rys. 1b). Łańcuchy oktaedrów są powiązane ze sobą poprzez wspólne naroża tworząc w efekcie struktury 3W o koordynacji 6:3 (rys. 1c).

Rys. 1. Struktura rutylu: a) komórka elementarna, b) wzajemne połączenie dwóch kolumn ośmiościennych grup koordynacyjnych TiO₆, c) rzut struktury na podstawę komórki elementarnej [2]

W tej strukturze każdy jon tlenu ma trzech sąsiadów w jednej płaszczyźnie, jon metalu (M) ma sześciu sąsiadów rozmieszczonych ośmiościennie, przy czym wszystkie odległości M-M (między środkami ośmiościanów wzdłuż łańcucha) są jednakowe. Miejsca kationów w strukturze rutylu mogą być obsadzane przez kationy dwóch lub więcej rodzajów zarówno w sposób bezładny (nieuporządkowana struktura rutylu), jak i w sposób regularny (nadstruktura). Fazy o strukturze nieuporządkowanej powstają wówczas, gdy ładunki kationów są takie same lub niewiele się różnią. Uporządkowane rozmieszczenia jonów występują wówczas, gdy ich ładunki bardzo się różnią i gdy muszą być spełnione specjalne wymagania dla poszczególnych atomów dotyczące utworzonych wiązań [2]. Wiele złożonych tlenków i fluorków krystalizuje w strukturze trójrutylu, w której jony metalu obsadzają połowę ośmiościennych luk wewnątrzsieciowych w strukturach o gęstym upakowaniu. W strukturze trójrutylu parametr c jest potrojony, co jest konsekwencją przestrzennego uporządkowania jonów metali dwu- i pięciowartościowych występujących w związkach wykazujących taką strukturę. Zarówno kationy dwu- jak i pięciowartościowe występują w oktaedrach MO₆. Oktaedry te są wzajemnie połączone poprzez krawędzie tworząc łańcuchy, w których naprzemiennie znajdują się oktaedry dwuwartościowych i oktaedry pięciowartościowych kationów w stosunku 1:2 [27]. Na rys. 2 przedstawiono dla porównania komórkę elementarną rutylu i trójrutylu.

Rys. 2. Komórka elementarna rutylu i trójrutylu [27]

Z informacji literaturowych wynika, że szereg faz o ogólnym wzorze (MO₂)_n i strukturze rutylu, takich jak RhTeSbO₆, CrTiSbO₆, Cr₂Nb₂WO₁₀, RuSnSbO₆, Cr₂V₂WO₁₀, FeVNbO₆, CrVNbO₆ [28–31] oraz trójrutylu, do których można zaliczyć antymoniany(V), niobany(V) i tantalany(V) metali dwuwartościowych, np. CuSb₂O₆, ZnNb₂O₆ i NiTa₂O₆ [22–26] zostało odkryte podczas badań dwu- i trójskładnikowych układów tlenków metali. Z informacji tych, wiadomo było miedzy innymi, że fazy o strukturze rutylu tworzące się w układach Ga–V–Nb–Sb–O [16], V–Sb–(W, Al)–O [17, 18], Fe–Sb–Ti–O [19], Sn–V–Sb–Nb–O [20], V–Mo–Sb–O [21] wykazują wysoką aktywność i selektywność katalityczną w procesie utleniającej amonolizy propanu i propenu do akrylonitrylu. Natomiast związki o strukturze trójrutylu są stosowane jako komponenty materiałów katodowych w wysokoenergetycznych ogniwach [22, 23], materiałów fotokatalitycznych [24, 25] oraz sensorów różnych gazów [26]. Katalityczne właściwości faz o strukturze rutylu, zdaniem niektórych autorów, wynikają z obecności w tej strukturze bardzo stabilnej powierzchni (110), na której generowane są centra aktywne lub adsorbowane są inne aktywne składniki katalizatorów [12, 32, 33].

Przegląd literatury wykazał również, że właściwości poszczególnych związków i faz są często modyfikowane poprzez świadome wprowadzanie różnych zanieczyszczeń, domieszek lub dodatków. Można oczekiwać, że nowe nieznane wcześniej fazy i związki o strukturze rutylu i trójrutylu będą wykazywały podobne lub znacznie lepsze aplikacyjnie właściwości elektryczne, optyczne czy katalityczne niż dotychczas znane związki. Szczególne znaczenie mają fazy typu roztworów stałych i to zarówno o ograniczonej, jak i nieograniczonej rozpuszczalności składników. Roztwory stałe należą bowiem do takiej grupy materiałów, których właściwości magnetyczne, elektryczne, optyczne i in.

zmieniają się nie tylko w funkcji ich składu chemicznego, lecz często także w funkcji temperatury. Wszechstronne zbadanie tego typu faz i ustalenie ich charakterystyk fizykochemicznych stwarza, więc możliwości do zaprojektowania nowych materiałów o pożądanych właściwościach aplikacyjnych, na które wciąż istnieje zapotrzebowane różnych gałęzi przemysłu.

Badania stanowiące treść mojej rozprawy habilitacyjnej rozpoczęłam już w roku 2000, tj. w okresie redagowania mojej pracy doktorskiej. Z tego powodu do kompilacji włączyłam pierwszą pracę, która ukazała się w tym samym roku, a dotyczyła nowej tematyki badawczej.

5.2. Cel i zakres badań

Właściwości fizykochemiczne tetratlenku diantymonu (Sb₂O₄) oraz znanych związków i faz tworzących się z jego udziałem o strukturze rutylu i trójrutylu, jak również wszechstronne ich stosowanie w wielu ważnych dziedzinach techniki zadecydowało, że przeprowadzono badania, których głównym celem było otrzymanie i scharakteryzowanie nowych, nieopisanych wcześniej w literaturze faz.

Osiągnięcie tego celu wymagało:

- zbadania reaktywności tetratlenku diantymonu z innymi tlenkami pierwiastków, w szczególności d-elektronowych i ustalenia, czy w wyniku reakcji pomiędzy nimi w fazie stałej, w atmosferze powietrza tworzą się nieznane dotychczas związki i fazy typu roztworów stałych,
- określenia optymalnych warunków syntezy, a w szczególności stwierdzenia, czy te nowe fazy tworzą się z udziałem, zawartego w powietrzu tlenu,
- przeprowadzenia syntez w atmosferze odtlenionego argonu, potwierdzających lub nie, że te nieznane dotychczas fazy tworzą się w reakcji pomiędzy odpowiednimi tlenkami, stanowiącymi składniki badanego układu bez lub z udziałem tlenu,
- ustalenia danych krystalograficznych, stabilności termicznej oraz podstawowych właściwości fizykochemicznych nowych faz metodami XRD, DTA–TGA, IR, SEM/EDX, UV-vis-DR,
- określenia właściwości elektrycznych i magnetycznych wybranych nowych faz,
- zbadania relacji fazowych w atmosferze powietrza w dwu- i trójskładnikowych układach tlenków w całym zakresie stężeń ich składników, pozwalające ustalić zakresy stężeń składników badanego układu, w których te nowe fazy współistnieją z innymi fazami lub tlenkami w stanie stałym.

5.2.1. Sposób przygotowania i syntezy próbek

Badania właściwe prezentowane w pracach stanowiących rozprawę habilitacyjną poprzedzano zawsze badaniami wstępnymi, których celem było przede wszystkim stwierdzenie, jakie fazy tworzą się w wybranym układzie tlenków w wyniku reakcji zachodzących w fazie stałej pomiędzy składnikami układu w atmosferze powietrza. Badania wstępne dodatkowo pozwalały ustalić optymalne warunki preparatyki, które zapewniały otrzymanie próbek jednofazowych lub próbek w stanie równowagi.

Badania wstępne, jak i właściwe polegały na:

- przygotowaniu próbek o wybranych składach, które naważano z tlenków stanowiących składniki badanego układu,
- ujednorodnieniu próbek poprzez ucieranie odpowiednich mieszanin tlenków w mechanicznym moździerzu agatowym (Pulverisette 2, Fritsch, Niemcy),
- formowaniu próbek w pastylki (prasa hydrauliczna PRM 50, Werther, Polska) oraz ich ważeniu,
- etapowym prażeniu próbek:
 - w atmosferze powietrza, w piecu oporowym (Czylok FCF 3,5/1350, Polska) zaopatrzonym w elektroniczny regulator temperatury pozwalający na utrzymywanie zadanej temperatury z dokładnością ±1°C,
 - w atmosferze odtlenionego argonu, przepływającego z szybkością około 10 dm³/h w piecu rurowym (Carbolite CTF 12/65/550, Anglia); stopień czystości argonu użytego do badań wynosił 99,996% przy wyjściowej zawartości tlenu nieprzekraczającej 6 ppm.,
 - w piecu rurowym (Czylok PRC 50/170/M, Polska) wyposażonym w stacjonarny pirometr optyczny (MARATHON MM, Raytek, Niemcy), pozwalający na ustalenie temperatur topnienia lub rozkładu próbek,
- chłodzeniu próbek po każdym etapie ich ogrzewania do temperatury ~300°C,
- ustaleniu zmiany masy i barwy próbek po ich ostygnięciu do temperatury pokojowej,
- zhomogenizowaniu próbek poprzez ucieranie w moździerzu i poddawaniu ich badaniom metodami XRD i DTA–TGA.

Otrzymane wyniki badań, a w szczególności skład fazowy próbek, pozwalały na podjęcie decyzji o dalszym toku postępowania. I tak, jeżeli skład fazowy po dwóch kolejnych etapach ogrzewania próbek wskazywał na znaczny stopień przereagowania substratów, próbki po ponownym spastylkowaniu poddawano dalszemu ogrzewaniu w temperaturze wyższej lub ponownie w temperaturze poprzedniego etapu, co zależało od właściwości termicznych faz identyfikowanych w próbkach oraz wyników badań DTA. Ogrzewanie próbek kończono wówczas, gdy stwierdzono, że wyniki ich badań metodą XRD i DTA–TG po dwóch kolejnych etapach ogrzewania były identyczne, a liczba faz identyfikowanych w próbce była zgodna z regułą faz Gibbsa, rozszerzoną o prawo sąsiadujących regionów fazowych. Następnie wybrane próbki poddawano badaniom uzupełniającym, np. IR, SEM/EDX, UV-vis-DR oraz wyznaczano ich gęstość.

Gęstość otrzymanych związków i faz oznaczano metodą piknometryczną:

- hydrostatyczną poprzez wyznaczenie masy badanej próbki w powietrzu, jak i w czterochlorku węgla (ciecz piknometryczna),
- przy użyciu ultrapiknometru gazowego ULTRAPYC1200e firmy Quantachrome Instruments (USA) w atmosferze argonu (4,8 Messer, Niemcy), pod ciśnieniem 1,4 bar.

Parametry komórek elementarnych otrzymanych związków i faz wyznaczano na podstawie wskaźnikowania ich dyfraktogramów proszkowych. Obliczenia przeprowadzono za pomocą programu POWDER [34, 35]. Udokładnianie parametrów komórek elementarnych przeprowadzano metodą najmniejszych kwadratów z użyciem programu REFINEMENT (program w pakiecie DHN/PDS).

Sposób topnienia nowych związków i faz ustalono na podstawie analizy fazowej próbek otrzymanych przez tzw. "zamrażanie". Metoda ta polega na ogrzewaniu próbek badanych związków w piecu oporowym, w ciągu ok. trzech godzin, w temperaturze zbliżonej do ekstremum zarejestrowanego efektu na ich krzywej DTA, a następnie ich gwałtownym schłodzeniu do temperatury pokojowej. Otrzymane w ten sposób próbki poddawano badaniom metodą XRD w celu ustalenia zarówno sposobu, jak i stałych produktów topnienia badanych faz.

5.2.2. Zastosowane metody badawcze

Realizacja postawionego celu badawczego sprowadzającego się najogólniej do jak najobszerniejszego poznania dwuskładnikowych i trójskładnikowych układów tlenków, w którym jednym ze składników jest tetratlenek diantymonu (α-Sb₂O₄) wymagała zastosowania wielu metod badawczych, a wśród nich:

metody dyfrakcji promieniowania rentgenowskiego (XRD) – dyfraktometry rentgenowskie: DRON–3 (Burevestnik, ZSRR), HZG–4/A-2 (Jena, NRD); EMPYREAN II (PANalytical, Holandia), stosowane promieniowanie: CoK_α (λ= 0,179021 nm) lub CuK_α (λ = 0,15418 nm); krok przesuwu goniometru 2θ równy 0,02°; czas zliczania impulsów w punkcie 1 s lub 10 s,

- różnicowej analizy termicznej połączonej z termograwimetrią (DTA–TGA) termoanalizatory: F. Paulik J. Paulik L. Erdey (MOM, Budapeszt, Węgry) oraz TA Instruments SDT 2960 (USA); zakres temperatur, w których prowadzono badania: od 20 do maksimum 1500°C; atmosfera gazowa wymuszony przepływ powietrza lub azotu; szybkość ogrzewania próbek 10°/min; tygle korundowe,
- spektroskopii w podczerwieni (IR) transmisyjny spektrofotometr IR SPECORD M–80 (Carl Zeiss, Jena, Niemcy); technika prasowania pastylek z KBr; zakres liczb falowych od 1200 do 300 cm⁻¹,
- spektroskopii UV-vis-DR spektrofotometr UV-vis V-670 (JASCO, Japonia) ze sferą całkującą PIV-756/PIN-757. Widma rejestrowano w zakresie długości fal 200-800 nm w temperaturze pokojowej.

Pomiary prowadzone przy użyciu wymienionych technik badawczych wykonano w jednostce macierzystej, tj. Katedrze Chemii Nieorganicznej i Analitycznej Wydziału Technologii i Inżynierii Chemicznej Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie (od 1.01.2009 następca prawny Politechniki Szczecińskiej).

W ramach pracy habilitacyjnej przeprowadzono również część badań w ramach współpracy z innymi ośrodkami naukowymi w kraju, tj.:

- badania metodą skaningowej mikroskopii elektronowej połączonej z ilościową analizą rentgenowską (SEM/EDX) w Instytucie Inżynierii Materiałowej Wydziału Inżynierii Mechanicznej i Mechatroniki Zachodniopomorskiego Uniwersytetu Technologicznego – skaningowy mikroskop elektronowy JSM-6100 (JEOL, Japonia) wyposażony w spektrometr dyspersji energii promieniowania rentgenowskiego firmy OXFORD z systemem ISIS 300,
- pomiary przewodnictwa elektrycznego oraz siły termoelektrycznej w Zakładzie Fizyki
 Kryształów Instytutu Fizyki Uniwersytetu Śląskiego w Katowicach,
- pomiary magnetyczne w Międzynarodowym Laboratorium Silnych Pól Magnetycznych i Niskich Temperatur we Wrocławiu.

Pomiary przewodnictwa elektrycznego badanych związków i faz typu roztworów stałych wykonano metodą stałoprądową DC z użyciem elektrometru dla wysokich wartości rezystancji KEITHLEY 6517B w zakresie temperatur od 76 do 400 K. Pomiary siły termoelektrycznej wykonano przy użyciu układu pomiarowego Seebeck Efect Measurement System (MMR Technologies, Inc., USA) w zakresie temperatur od 300 do 600 K.

Pomiary magnetyczne wykonano przy użyciu wibracyjnego magnetometru z silnikiem krokowym w zakresie temperatur 4,2–180 K przy zastosowaniu zewnętrznego pola magnetycznego o indukcji magnetycznej zmieniającej się od 0 do 14 T.

5.3. Reaktywność α-Sb₂O₄ z Cr₂O₃

Prace badawcze wchodzące w zakres prezentowanej rozprawy habilitacyjnej rozpoczęto od zbadania reaktywności tetratlenku diantymonu z tlenkiem chromu (III) **[H-1]**. Inspiracją do podjęcia takich badań był fakt, że w dostępnej literaturze nie znaleziono informacji dotyczących badań nad reakcjami przebiegającymi pomiędzy tlenkami α -Sb₂O₄ i Cr₂O₃ w stanie stałym w atmosferze powietrza oraz danych odnośnie równowag fazowych, ustalających się w takiej atmosferze w układzie α -Sb₂O₄–Cr₂O₃. Tylko w nielicznych pracach dotyczących reaktywności tlenku antymonu(III) i tlenku chromu(III) w atmosferze powietrza wykazano istnienie związku o strukturze rutylu, któremu przypisano wzór CrSbO₄ [36, 37].

W celu ustalenia rodzaju i liczby faz tworzących w nie zbadanym dotychczas dwuskładnikowym układzie α -Sb₂O₄–Cr₂O₃, podjęto prace zmierzające w pierwszym rzędzie do określenia relacji fazowych ustalających się w tym układzie w stanie stałym w atmosferze powietrza w całym zakresie stężeń składników. Otrzymane wyniki badań pozwoliły stwierdzić między innymi, że niskotemperaturowa odmiana polimorficzna tetratlenku diantymonu, tj. α -Sb₂O₄ reaguje z tlenkiem chromu(III) tworząc związek CrSbO₄. Reakcja syntezy zachodzi z udziałem tlenu zawartym w powietrzu zgodnie z równaniem reakcji:

$$Cr_2O_{3(s)} + \alpha - Sb_2O_{4(s)} + \frac{1}{2}O_{2(g)} = 2 CrSbO_{4(s)}$$
(1)

Tworzący się z udziałem tlenu związek CrSbO₄, w którym chrom występuje na +3 a antymon na +5 stopniu utlenienia, w rzeczywistości jest związkiem należącym do układu Cr₂O₃– Sb₂O₅. Wskaźnikowanie dyfraktogramu proszkowego otrzymanego związku, który był zgodny z danymi podanymi w karcie PDF nr 35-1288, wskazało jednoznacznie, że związek ten wykazuje strukturę rutylu **[H-1]**, tj. krystalizuje w układzie tetragonalnym (grupa przestrzenna P4₂/mnm), a parametry jego komórki elementarnej wynoszą [37]: a = b = 0,45899(2) nm, c = 3,0525(2) nm.

Na podstawie przeprowadzonych badań metodą DTA–TG ustalono również, że związek CrSbO₄ ulega rozkładowi w temperaturze 1380°C z wydzieleniem stałego Cr₂O₃ i produktów gazowych zawierających m. in. Sb₄O₆ i tlen. Porównanie widm IR tlenków α -Sb₂O₄ i Cr₂O₃ oraz związków chromu i antymonu o znanych strukturach z widmem IR badanego związku CrSbO₄ pozwoliło na wstępne wyciągnięcie wniosków dotyczących jego

budowy. Na podstawie jakościowej analizy widma IR badanego związku stwierdzono, że związek ten jest zbudowany zarówno z oktaedrów SbO₆, jak i CrO₆, co jest charakterystyczne dla związków o strukturze rutylu [38–40].

Z danych literaturowych wynika, że badania reaktywności α -Sb₂O₄ z Cr₂O₃ posiadają istotne znaczenie z punktu widzenia otrzymywania katalizatorów, które mogą być opisane tym układem tlenków. Wiadomo m. in., że katalizatory stanowiące mieszaninę CrSbO₄, tj. fazy o strukturze rutylu z α -Sb₂O₄ są aktywne i selektywne w procesie bezpośredniego utleniania propanu do akrylonitrylu w obecności amoniaku [41]. Z tego względu badania nadal są kontynuowane w celu opracowania metody preparatyki katalizatorów zawierających fazy o strukturze rutylu, które znajdą zastosowanie w przemysłowym otrzymywaniu akrylonitrylu z propanu.

5.4. Układ trójskładnikowy Cr₂O₃–α-Sb₂O₄–MoO₃

W dalszym toku pracy rozszerzono badania o układy trójskładnikowe tlenków, w których jednym z układów bocznych jest układ α -Sb₂O₄–Cr₂O₃. Wybierając do badań dodatkowy tlenek, stanowiący trzeci składnik danego układu, kierowano się głównie możliwościami aplikacyjnymi zarówno tego tlenku, jak i związków tworzących się z jego udziałem w atmosferze powietrza. W pierwszej kolejności do badań wybrano tlenek molibdenu(VI). Z informacji literaturowych wynikało bowiem, że zarówno tlenki molibdenu i antymonu, a także związki tworzące się w wyniku reakcji pomiędzy tymi tlenkami stanowią składniki aktywnych i selektywnych katalizatorów procesów utleniania związków organicznych, np. benzenu do bezwodnika maleinowego, metanolu do formaldehydu, propenu do akroleiny lub kwasu akrylowego oraz w reakcjach otrzymywania estrów [42, 43]. Wydawało się, że takich atrakcyjnych z technologicznego punktu widzenia właściwości można również oczekiwać w przypadku faz dotychczas nie odkrytych, tworzących się w układzie Cr₂O₃– α -Sb₂O₄–MoO₃ w atmosferze powietrza [H-2].

Z przeglądu literatury wynikało, że o ile dwuskładnikowe układy tlenków, tj. $MoO_3-\alpha$ - Sb_2O_4 i $Cr_2O_3-MoO_3$ są dość dobrze poznane, to układ trójskładnikowy $Cr_2O_3-\alpha$ - $Sb_2O_4-MoO_3$ przed tymi pracami nie był wcześniej przedmiotem badań.

Przeprowadzone badania pozwoliły między innymi stwierdzić, że MoO₃ tworzy roztwór stały z CrSbO₄ przy czym jony Mo⁶⁺ mogą wbudowywać się w sieć krystaliczną CrSbO₄ w miejsce jonów Sb⁵⁺ jak i w miejsce jonów Cr³⁺. Te możliwości substytucji wydawały się prawdopodobne ze względu na zbliżone promienie jonów Mo⁶⁺ (0,059 nm), Sb⁵⁺ (0,060 nm) i Cr³⁺ (0,061 nm) w otoczeniu oktaedrycznym MO₆. W związku z tym, przeprowadzono w

powietrzu syntezę próbek z tlenków MoO₃, Cr_2O_3 i α -Sb₂O₄ o składach tak dobranych, aby reprezentowały teoretyczne modele substytucyjnych roztworów stałych. W badaniach założono, że jony Mo⁶⁺ wbudowują się w sieć krystaliczną CrSbO₄ w miejsce jonów Cr³⁺, co spowoduje powstanie nadmiarowych ładunków dodatnich, których kompensacja będzie możliwa poprzez **[H-2]**:

- powstawanie luk kationowych (□) w podsieci Cr³⁺ z równoczesnym usunięciem ekwiwalentnej liczby jonów Cr³⁺ z sieci krystalicznej CrSbO₄. Roztwór stały odpowiadający temu modelowi opisuje wzór: Cr_{1-2x}□_xMo_xSbO₄ (model I)
- powstanie luk kationowych w podsieci Sb⁵⁺, wówczas wzór roztworu stałego można zapisać: Cr_{1-5x}Mo_{5x}Sb_{1-3x}□_{3x}O₄ (model II)
- redukcję jonów Cr^{3+} do jonów Cr^{2+} : $Cr^{3+}_{1-4x}Cr^{2+}_{3x}Mo_xSbO_4$ (model IIIA) - redukcję jonów Sb^{5+} do jonów Sb^{3+} : $Cr_{1-2x}Mo_{2x}Sb^{5+}_{1-x}Sb^{3+}_{x}O_4$ (model IIIB)

W przypadku modeli IIIA i IIIB skład mieszaniny wyjściowej tlenków wynika ze wspólnego wyrażenia: Cr_{1-x}Mo_xSbO_{4-3x}.

W przypadku substytucji jonów Sb⁵⁺ jonami Mo⁶⁺ w sieci krystalicznej CrSbO₄, kompensacja nadmiarowych ładunków dodatnich jest możliwa poprzez:

- powstawanie luk kationowych w podsieci Cr^{3+} : $Cr_{1-x}\Box_xSb_{1-3x}Mo_{3x}O_4$ (model IV)
- powstawanie luk kationowych w podsieci Sb⁵⁺: $CrSb_{1-6x}\Box_xMo_{5x}O_4$ (model V)
- redukcję jonów Sb⁵⁺ do jonów Sb³⁺: $CrSb_{1-3x}^{5+}Sb_x^{3+}Mo_{2x}O_4$ (model VIA)

- redukcję jonów Cr^{3+} do jonów Cr^{2+} : $Cr^{3+}_{1-x}Cr^{2+}_xSb_{1-x}Mo_xO_4$ (model VIB)

Składy próbek w przeliczeniu na tlenki MoO₃, Cr_2O_3 i α -Sb₂O₄, odpowiadające modelom VIA i VIB są jednakowe i wynikają z wspólnego wyrażenia: $CrSb_{1-x}Mo_xO_{4-x}$.

Przeprowadzone metodą XRD badania pozwoliły stwierdzić, że roztwór stały pomiędzy MoO_3 a CrSbO₄ powstaje według modelu zgodnie, z którym tworzy się faza o wzorze $CrSb_{1-6x} \square_x Mo_{5x}O_4$, tj. substytucja jonów Sb⁵⁺ jonami Mo⁶⁺ w sieci krystalicznej CrSbO₄ powoduje powstanie nadmiarowych ładunków dodatnich, których kompensacja następuje poprzez powstanie luk kationowych w podsieci Sb⁵⁺. Rozpuszczalność MoO₃ w CrSbO₄ nie przekracza 25,00% mol **[H-2]**.

Badania jednofazowych próbek roztworu stałego wykonane metodą DTA–TG wykazały, że roztwór stały $CrSb_{1-6x} \square_x Mo_{5x}O_4$ jest trwały do temperatury ~1320°C, w której to ulega rozkładowi m. in. do Cr_2O_3 . Ponadto stwierdzono, że roztwór stały MoO_3 w $CrSbO_4$ współistnieje z α -Sb₂O₄ do temperatury sublimacji tego tlenku, tj. do 1020°C.

Otrzymane w ramach tej pracy **[H-2]** wyniki badań pozwoliły podzielić trójskładnikowy układ $Cr_2O_3-\alpha$ - Sb_2O_4 -MoO_3 na pięć układów składowych (rys. 3), tj. $CrSbO_{4(r.s.)}-\alpha$ - Sb_2O_4 ; $CrSbO_{4(r.s.)}-Cr_2O_3$; $CrSbO_{4(r.s.)}-Cr_2O_3-Cr_2(MoO_4)_3$; $CrSbO_{4(r.s.)}-Cr_2(MoO_4)_3-MoO_3$ i $CrSbO_{4(r.s.)}-MoO_3-\alpha$ - Sb_2O_4 .

Rys.3. Trójkąt stężeń składników układu Cr₂O₃-α-Sb₂O₄-MoO₃
------ położenie teoretycznych modeli roztworu stałego MoO₃ w CrSbO₄
------ przekrój CrSbO₄-MoO₃
— podział badanego układu na układy cząstkowe:
A: CrSbO_{4(r.s.)}-α-Sb₂O₄; B: CrSbO_{4(r.s.)}-Cr₂O₃; C: CrSbO_{4(r.s.)}-Cr₂O₃-Cr₂(MoO₄)₃
D: CrSbO_{4(r.s.)}-Cr₂(MoO₄)₃-MoO₃; E: CrSbO_{4(r.s.)}-MoO₃-α-Sb₂O₄

Jednym ze składników układów cząstkowych jest związek CrSbO₄, w którego syntezie z tlenków Cr₂O₃ i α -Sb₂O₄ bierze udział zawarty w powietrzu tlen. Z formalnego punktu widzenia związek ten należy do układu Cr₂O₃–Sb₂O₅ i dlatego badany w atmosferze powietrza układ tlenków Cr₂O₃– α -Sb₂O₄–MoO₃ w części ograniczonej fazami Cr₂O₃–MoO₃–CrSbO₄(r.s.)–CrSbO₄ jest w rzeczywistości fragmentem układu Cr₂O₃–MoO₃–Sb₂O₅, natomiast w pozostałym zakresie stężeń składników jest częścią układu Cr₂O₃–MoO₃–Sb₂O₄–Sb₂O₅ lub ogólnie zapisanym układem Cr₂O₃–Sb₂O₄–MoO₃–O₂. Za tym ostatnim zapisem przemawia fakt, że w mieszaninach reakcyjnych nie wykazano obecności Sb₂O₅, ponieważ tlenek ten już w temperaturze ~525°C rozkłada się do α -Sb₂O₄ i tlenu [44].

5.5. Układy trójskładnikowe $M_2O_3-\alpha$ -Sb₂O₄-V₂O₅, gdzie M = Cr, Fe, AI

5.5.1. Układ Cr₂O₃-α-Sb₂O₄-V₂O₅

W dalszym etapie prac tematykę prowadzonych badań wzbogacono o trójskładnikowy układ $Cr_2O_3-\alpha$ - $Sb_2O_4-V_2O_5$ **[H-3]**, w którym jednym z układów bocznych, analogicznie jak w układzie $Cr_2O_3-\alpha$ - $Sb_2O_4-MoO_3$ **[H-2]**, jest dwuskładnikowy układ $Cr_2O_3-\alpha$ - Sb_2O_4 . Tlenek wanadu(V) wybrano do badań zarówno ze względu na właściwości tego tlenku, jak i tworzonych się z jego udziałem licznych związków. Związki powstające w wyniku reakcji V_2O_5 i α - Sb_2O_4 , między innymi $Sb_{0,92}V_{0,92}O_4$, wykazują wysoką aktywność i selektywność katalityczną w procesach utleniania różnych węglowodorów oraz ich pochodnych, np. metanolu do formaldehydu, toluenu do aldehydu benzoesowego czy akroleiny do kwasu akrylowego [9–13].

Na podstawie danych literaturowych dotyczących układu $Cr_2O_3-\alpha$ - $Sb_2O_4-V_2O_5$ stwierdzono, że został on przed tymi pracami zbadany w bardzo ograniczonym zakresie, tj. przede wszystkim w zakresie tworzącego się związku o strukturze rutylu i wzorze CrVSbO₆ [45, 46]. Przed tymi badaniami związek ten otrzymano w atmosferze inertnej z równomolowej mieszaniny tlenków: $V_2O_4/Sb_2O_5/Cr_2O_3$ [45] oraz metodą wytrącania z roztworów zawierających Cr(NO₃)₃·6H₂O, VO₂ i SbCl₅ [46]. W związku CrVSbO₆ chrom występuje na +3, antymon na +5, a wanad na +4 stopniu utlenienia [45, 46].

W ramach pracy **[H–3]** przeprowadzono badania, w wyniku których związek CrVSbO₆ otrzymano zgodnie z równaniami reakcji:

 $Cr_2O_{3(s)} + Sb_2O_{4(s)} + V_2O_{5(s)} = 2 CrVSbO_{6(s)}$ (2)

 $V_2O_{5(s)} + 2 CrSbO_{4(s)} = 2 CrVSbO_{6(s)} + \frac{1}{2} O_{2(g)}$ (3)

 $Sb_2O_{4(s)} + 2 CrVO_{4(s)} = 2 CrVSbO_{6(s)}$ (4)

 $Cr_2O_{3(s)} + 2 SbVO_{5(s)} = 2 CrVSbO_{6(s)} + \frac{1}{2}O_{2(g)}$ (5)

$$CrVO_{4(s)} + CrSbO_{4(s)} + SbVO_{5(s)} = 2 CrVSbO_{6(s)} + \frac{1}{2} O_{2(g)}$$
 (6)

Syntezę związku CrVSbO₆ przeprowadzono zarówno w atmosferze powietrza, jak i odtlenionego argonu w zakresie temperatur od 600°C do 1000°C.

W dalszej części tych badań ustalono podstawowe właściwości fizykochemiczne tego związku oraz wyznaczono zakresy stężeń składników układu $Cr_2O_3-\alpha$ - $Sb_2O_4-V_2O_5$, w których związek ten jest fazą współistniejącą z innymi związkami tworzącymi się w odpowiednich układach brzegowych (rys. 4).

Rys. 4. Podział układu $Cr_2O_3-\alpha$ - $Sb_2O_4-V_2O_5$ na układy cząstkowe: I – V_2O_5 - $CrVSbO_6$ - $SbVO_5$; II - V_2O_5 - $CrVSbO_6$ - $Cr_2V_4O_{13}$; III - $Cr_2V_4O_{13}$ - $CrVSbO_6$ - $CrVO_4$; IV – $CrVO_4$ - $CrVSbO_6$ - Cr_2O_3 ; V - Cr_2O_3 - $CrVSbO_6$ - $CrSbO_4$; VI – $CrSbO_4$ - $CrVSbO_6$ - $SbVO_5$, VII – $CrSbO_4$ - $SbVO_5$ - α - Sb_2O_4

Do najważniejszych osiągnięć tej pracy [H-3] można zaliczyć:

- Stwierdzenie, że w układzie Cr₂O₃–α-Sb₂O₄–V₂O₅ w wyniku reakcji zachodzących w stanie stałym pomiędzy składnikami tego układu tworzy się znany od niedawna związek CrVSbO₆.
- Ustalenie, że charakterystyka rentgenowska tego związku jest niemalże identyczna z charakterystyką związku otrzymanego w ramach pracy [45]. Wskaźnikowanie dyfraktogramu proszkowego związku CrVSbO₆ potwierdziło, że krystalizuje on w układzie tetragonalnym i posiada strukturę typu rutylu. Obliczone parametry komórki elementarnej [H-3]: a = b= 0,45719(12) nm, c = 0,30282(8) nm, V = 0,0632987 nm³, Z = 2, nieznacznie różnią się od parametrów podanych w literaturze [45].
- Wykazanie, że związek CrVSbO₆ topi się inkongruentnie w temperaturze 1300±5°C, a stałym produktem jego topnienia jest Cr₂O₃.
- Przeanalizowanie widma IR związku CrVSbO₆, co pozwoliło na potwierdzenie, że związek ten jest zbudowany zarówno z poliedrów SbO₆, VO₆ jak i CrO₆, tj. analogicznie jak w innych związkach o strukturze rutylu, z oktaedrów MO₆.
- Określenie zakresów stężeń składników układu Cr₂O₃–α-Sb₂O₄–V₂O₅, w których związek CrVSbO₆ współistnieje z innymi fazami w stanie stałym.
- Dokonanie podziału układu Cr₂O₃–α-Sb₂O₄–V₂O₅ na siedem układów cząstkowych (rys. 4) oraz ustalenie temperatur rozkładu lub topnienia, do których dane fazy współistnieją ze sobą i związkiem CrVSbO₆ w atmosferze powietrza.

5.5.2. Układy $Fe_2O_3 - \alpha - Sb_2O_4 - V_2O_5$ i $AI_2O_3 - \alpha - Sb_2O_4 - V_2O_5$

Badania trójskładnikowych układów tlenków $Fe_2O_3-Sb_2O_4-V_2O_5$ **[H-7]** i $Al_2O_3-Sb_2O_4-V_2O_5$ **[H-8]** podjęto w celu stwierdzenia, czy w tych układach tworzą się fazy o strukturze rutylu i ogólnym wzorze MVSbO₆ i czy są one izostrukturalne z CrVSbO₆, tworzącym się w układzie $Cr_2O_3-\alpha$ -Sb₂O₄-V₂O₅ **[H-3]**.

W wyniku przeprowadzonych badań stwierdzono, że w trójskładnikowych układach $M_2O_3-\alpha$ -Sb₂O₄-V₂O₅ (M = Fe, AI), w atmosferze powietrza lub argonu, w zakresie temperatur od 550°C do 750°C, tworzą się, nieznane wcześniej i nieopisane w literaturze związki FeVSbO₆ i AIVSbO₆. Związki te otrzymano w wyniku reakcji przebiegającej w fazie stałej pomiędzy różnymi substratami zgodnie z równaniami reakcji:

$$M_2O_{3(s)} + Sb_2O_{4(s)} + V_2O_{5(s)} = 2 MVSbO_{6(s)}$$
(7)

 $V_2O_{5(s)} + 2 \text{ MSb}O_{4(s)} = 2 \text{ MVSb}O_{6(s)} + \frac{1}{2} O_{2(g)}$ (8)

$$Sb_2O_{4(s)} + 2 MVO_{4(s)} = 2 MVSbO_{6(s)}$$
 (9)

$$M_2O_{3(s)} + 2 SbVO_{5(s)} = 2 MVSbO_{6(s)} + \frac{1}{2} O_{2(g)}$$
(10)

$$MVO_{4(s)} + MSbO_{4(s)} + SbVO_{5(s)} = 2 MVSbO_{6(s)} + \frac{1}{2} O_{2(g)}$$
(11)

Kontrola zmiany masy próbek prowadzona po każdym etapie ich ogrzewania pozwoliła stwierdzić, że syntezie preparatów prowadzonej zgodnie z równaniami reakcji 8, 10 i 11 towarzyszyły ubytki masy, które po wszystkich etapach ogrzewania wynosiły ~2,5 % mas. i były porównywalne z teoretycznymi ubytkami masy obliczonymi na podstawie tych równań reakcji. Potwierdziło to, że synteza związków FeVSbO₆ [H-7] i AIVSbO₆ [H-8] z substratów podanych w równaniach reakcji 8, 10 i 11 przebiega z wydzieleniem tlenu.

Biorąc pod uwagę wyjściowe substraty użyte do syntezy związków MVSbO₆, tj. V₂O₅, Sb₂O₄ i Fe₂O₃ (lub Al₂O₃, Cr₂O₃) można wyciągnąć wniosek, że w trakcie reakcji pomiędzy tymi tlenkami w układzie zachodzi reakcja elektronacji i dezelektronacji, w której antymon utlenia się z Sb³⁺ do Sb⁵⁺, a wanad redukuje się z +5 do +4 stopnia utlenienia zgodnie z równaniami reakcji:

$$Sb^{3+} \rightarrow Sb^{5+} + 2 e^{-}$$
$$2 V^{5+} + 2 e^{-} \rightarrow 2 V^{4-}$$

Dowodem takiego przebiegu reakcji jest fakt, że związki MVSbO₆ (M = Fe, AI, Cr) otrzymano w atmosferze beztlenowej, tj. argonu.

W celu ustalenia podstawowych danych krystalograficznych, dyfraktogramy proszkowe otrzymanych związków FeVSbO₆ **[H-7]** i AlVSbO₆ **[H-8]** poddano wskaźnikowaniu za pomocą programów wymienionych w punkcie 5.2.2. tego załącznika. W tabeli 2 zestawiono podstawowe dane krystalograficzne związków MVSbO₆, tj. FeVSbO₆ **[H-7]**, AlVSbO₆ **[H-8]** oraz otrzymanego wcześniej CrVSbO₆ **[H-3]**.

Tabela 2.

Parametry komórek elementarnych oraz gęstość (doświadczalna i rentgenowska) związków MVSbO₆ (M = AI, Cr, Fe)

Związek	a = b [nm]	c [nm]	V [nm ³]	Z	ρ _{dośw.} [g/cm ³]	ρ _{rtg.} [g/cm³]
AIVSbO ₆	0,44945	0,29498	0,0596	2	5,21	4,96
CrVSbO ₆	0,45719	0,30282	0,0633	2	5,55	5,61
FeVSbO ₆	0,46040	0,30530	0,0647	2	5,41	5,55

Na podstawie wyników wskaźnikowania dyfraktogramów proszkowych związków MVSbO₆ (M = AI, Cr, Fe) stwierdzono, że krystalizują one w układzie tetragonalnym i tworzą rodzinę izostrukturalnych związków o strukturze rutylu, a wartości parametrów ich komórek elementarnych wzrastają wraz ze wzrostem liczby atomowej pierwiastka trójwartościowego występującego w ich strukturze.

Stabilność termiczną nowych związków ustalono w oparciu o wyniki badań przeprowadzonych metodami różnicowej analizy termicznej połączonej z termograwimetrią (DTA–TG), a produkty ich topnienia lub rozkładu metodą proszkowej dyfrakcji rentgenowskiej (XRD). Wykazano, że związek FeVSbO₆ topi się inkongruentnie w temperaturze ~1280°C z wydzieleniem stałego Fe₂O₃ **[H-7]**. Natomiast związek AIVSbO₆ jest trwały w powietrzu do temperatury ~820°C, w której to rozpoczyna się jego rozkład do VSbO₄ i AlSbO₄ **[H-8]**. VSbO₄ jest fazą tworzącą się w układzie V₂O₅–Sb₂O₄ w atmosferze powietrza, która w temperaturze powyżej 820°C rozkłada się tworząc roztwór stały V₂O₅ w β -Sb₂O₄ [47].

Związki MVSbO₆ (M = Fe, Al) **[H-7, H-8]** poddano badaniom metodą spektroskopii w podczerwieni (IR). Metoda ta umożliwia identyfikację określonych grup strukturalnych poprzez przypisanie tym grupom charakterystycznych dla nich pasm absorpcji. Ma to istotne znaczenie w badaniach związków o nieznanej jeszcze strukturze. Szczegółowa analiza porównawcza widm IR otrzymanych związków MVSbO₆ z widmami odpowiednich tlenków i znanych już faz o strukturze rutylu zawierających jony pierwiastków trójwartościowych [38–

40] wykazała obecność, w strukturze tych związków oktaedrów SbO₆, VO₆ i MO₆ (M = Fe, Al).

Na rys. 5 przedstawiono, jako przykładowe, widma IR, mieszanin substratów, z których otrzymano związek FeVSbO₆ (widma a–c) oraz widmo IR tego związku (rys. 5d) zarejestrowane w zakresie liczb falowych 1200–300 cm⁻¹.

Rys. 5. Widma IR [H-7]:

- a mieszaniny wyjściowej: 33,33 mol% V_2O_5 + 33,33 mol% Fe_2O_3 + 33,34 mol% α -Sb₂O₄;
- b mieszaniny wyjściowej: 66,67 mol% FeVO₄ + 33,33 mol% α -Sb₂O₄;
- c mieszaniny wyjściowej: 66,67 mol% SbVO₅ + 33,33 mol% Fe₂O₃;
- d związku FeVSbO₆

Z rysunku 5 wynika, że widmo IR związku FeVSbO₆ różni się od widm odpowiednich mieszanin substratów, zarówno pod względem liczby zarejestrowanych pasm absorpcji, jak ich położenia oraz intensywności. Widmo IR związku FeVSbO₆ posiada trzy pasma absorpcji rejestrowane w zakresie liczb falowych poniżej 850 cm⁻¹, tj. z maksimum przy 360 cm⁻¹, 550 cm⁻¹ i pasmo przy 685 cm⁻¹ z niewielkim przegięciem od strony wyższych liczb falowych, przy 735 cm⁻¹. Szerokie intensywne pasmo absorpcyjne, którego maksimum absorpcji jest rejestrowane przy 685 cm⁻¹ można przypisać drganiom rozciągającym wiązań M–O–M [48]. Kolejne pasmo z maksimum przy 550 cm⁻¹ i ostrymi przegięciami przy 505 cm⁻¹, 535 cm⁻¹ i 590 cm⁻¹ w świetle informacji literaturowych można przypisać drganiom rozciągającym wiązań Fe–O w oktaedrach SbO₆ [38, 49], jak również drganiom rozciągającym występuje przy

360 cm⁻¹ wywołane może być zarówno drganiami deformującymi wiązań O–M–O (O–V–O, O–Fe–O, O–Sb–O), jak i wiązań V–O w zniekształconych oktaedrach VO₆ lub posiadać mieszany charakter [38, 39, 50, 53, 59]. Ta jakościowa analiza widma IR związku FeVSbO₆ wskazała, że związek ten zbudowany jest z bardziej lub mniej zdeformowanych oktaedrów SbO₆, VO₆ i FeO₆. Na tej podstawie nie można jednoznacznie wnioskować o sposobie połączenia tych poliedrów.

5.6. Substytucyjne ciągłe roztwory stałe o strukturze rutylu tworzące się w pseudodwuskładnikowych układach FeVSbO₆–CrVSbO₆ i FeSnSbO₆–CrSnSbO₆

5.6.1. Układ FeVSbO₆–CrVSbO₆

Kolejnym etapem pracy było doświadczalne wykazanie, że jony Cr^{3+} mogą wbudowywać się w sieć krystaliczną związku FeVSbO₆ tworząc ciągły roztwór stały. Możliwość tworzenia się takiego roztworu wynika z izostrukturalności składników układu FeVSbO₆–CrVSbO₆ **[H-3, H-7]** oraz zbliżonych wartości promieni jonowych Fe³⁺ (0,0645 nm) i Cr³⁺ (0,0615 nm) w oktaedrach MO₆.

Na podstawie przeprowadzonych badań **[H-9, H-13]** wykazano, że w układzie $FeVSbO_6$ –CrVSbO₆ tworzy się substytucyjny ciągły roztwór stały o wzorze $Fe_{1-x}Cr_xVSbO_6$, tj. dla 0<x<1, zgodnie z równaniami reakcji:

$$(1-x) \operatorname{Fe}_{2}O_{3(s)} + x \operatorname{Cr}_{2}O_{3(s)} + \operatorname{Sb}_{2}O_{4(s)} + V_{2}O_{5(s)} = 2 \operatorname{Fe}_{1-x}\operatorname{Cr}_{x}\operatorname{VSbO}_{6(r.s.)}$$
(12)

$$(1-x) \operatorname{FeVSbO}_{6(s)} + x \operatorname{CrVSbO}_{6(s)} = \operatorname{Fe}_{1-x} \operatorname{Cr}_{x} \operatorname{VSbO}_{6(r.s.)}$$
(13)

Analiza dyfraktogramów proszkowych jednofazowych próbek zawierających roztwór stały $Fe_{1-x}Cr_xVSbO_6$, pozwoliła stwierdzić, że wraz ze wzrostem wartości parametru x, maleją wartości odległości międzypłaszczyznowych (d), charakterystycznych dla danego roztworu w porównaniu z czystym związkiem FeVSbO₆ i zbliżają się one do wartości charakterystycznych dla CrVSbO₆ **[H-9, H-13]**.

W celu potwierdzenia, że roztwór stały $Fe_{1-x}Cr_xVSbO_6$ krystalizuje w układzie tetragonalnym o strukturze rutylu oraz wyznaczenia parametrów jego komórek elementarnych w funkcji zmieniającego się stopnia wbudowania jonów Cr^{3+} w sieć krystaliczną $FeVSbO_6$ dyfraktogramy proszkowe badanego roztworu dla x = 0,05; 0,25; 0,50; 0,75 i 0,90 poddano wskaźnikowaniu. Przeprowadzone obliczenia wykazały, że roztwór stały $Fe_{1-x}Cr_xVSbO_6$ krystalizuje w układzie tetragonalnym, a wraz ze zwiększeniem stopnia wbudowania jonów Cr^{3+} w miejsce jonów Fe^{3+} następuje kontrakcja sieci krystalicznej $FeVSbO_6$, tj. zmniejszenie objętości komórki elementarnej.

Określenie trwałości termicznej roztworu stałego $Fe_{1-x}Cr_xVSbO_6$ (x = 0,05; 0,25; 0,50; 0,75; 0,90) rozpoczęto od badań metodą różnicowej analizy termicznej połączonej z termograwimetria w zakresie temperatur od 20-1000°C. Badania DTA-TG prowadzono zarówno w atmosferze powietrza, jak i argonu. Na krzywych DTA i TG badanych próbek do 1000°C nie zarejestrowano żadnego efektu, co świadczy o tym, że roztwór Fe_{1-x}Cr_xVSbO₆ jest trwały termicznie w powietrzu, co najmniej do tej temperatury. W następnym etapie badań pomiary DTA-TG próbek badanego roztworu prowadzono do temperatury 1400°C, ale z przyczyn technicznych tylko w atmosferze argonu. Różnicowa analiza termiczna wybranych jednofazowych próbek zawierających $Fe_{1-x}Cr_xVSbO_6$ gdzie x = 0,25; 0,50; 0,75, prowadzona do 1400°C w atmosferze argonu, wykazała obecność na krzywych DTA tylko jednego endotermicznego efektu w temperaturze ~1350°C. Wraz ze wzrostem wartości parametru x, temperatura początku tego efektu nie zmieniała się istotnie. Według wcześniejszych badań [H-1] temperatura tego efektu jest zbliżona do temperatury termicznego rozkładu CrSbO₄. Z drugiej strony na krzywych TG badanych próbek rejestrowany był ubytek masy, rozpoczynający się już w temperaturze ~1050°C i do temperatury ~1400°C w zależności od składu chemicznego roztworu (x) wahający się od 45,15 do 66,13 % masowych. W świetle przeprowadzonych badań wykazano ostatecznie, że ubytek masy rejestrowany na krzywych TG próbek badanego roztworu stałego związany jest z jego termicznym rozkładem. Przeprowadzone badania [H-9] pozwoliły stwierdzić, że roztwór stały Fe_{1-x}Cr_xVSbO₆ jest trwały w atmosferze argonu do temperatury ~1050°C, w której to rozpoczyna się jego rozkład do CrSbO₄ i Fe₂O₃ z jednoczesnym wydzielaniem się m. in. dimeru gazowego tlenku antymonu(III).

Analiza szeregu widm IR roztworu stałego $Fe_{1-x}Cr_xVSbO_6$ i związków $FeVSbO_6$ i CrVSbO₆ **[H-9]** wykazała, że wraz ze wzrostem stopnia wbudowania jonów Cr^{3+} w sieć krystaliczną $FeVSbO_6$ rejestrowane pasma absorpcji IR przesuwają się w kierunku wyższych liczb falowych i zbliżają do położenia pasm absorpcji charakterystycznych dla CrVSbO₆. Wyniki tej części badań potwierdziły, że roztwór stały $Fe_{1-x}Cr_xVSbO_6$ niewątpliwie ma strukturę rutylu i jest zbudowany z silnie zdeformowanych oktaedrów MO₆ (M=V, Fe, Cr, Sb).

Badania metodą skaningowej mikroskopii elektronowej (SEM) połączonej z mikroanalizą rentgenowską (EDX) zarówno związków FeVSbO₆ i CrVSbO₆, jak i roztworu stałego Fe_{1-x}Cr_xVSbO₆ potwierdziły zaproponowane wzory tworzących się faz **[H–9]**. Rys. 6 przedstawia obraz kryształów FeVSbO₆ (a), CrVSbO₆ (b) oraz roztworu stałego Fe_{1-x}Cr_xVSbO₆ dla x = 0,5 (c). Z rysunku 6 wynika, że zarówno pokroje kryształów FeVSbO₆ i CrVSbO₆, jak i roztworu stałego są do siebie zbliżone, a różnią się jedynie rozmiarami. Kryształy FeVSbO₆ i CrVSbO₆ mają rozmiary od ~0,75 do 4 μ m, natomiast średnia wielkość kryształów Fe_{0,5}Cr_{0,5}VSbO₆ wynosi około 0,5 μ m. Rozmiary największych kryształów Fe_{0,5}Cr_{0,5}VSbO₆ są rzędu 2,5 μ m, podczas gdy wielkość mniejszych kryształów często nie przekracza 0,35 μ m.

Rys. 6. Obraz SEM kryształów FeVSbO₆ (a), CrVSbO₆ (b), Fe_{0.5}Cr_{0.5}VSbO₆ (c) [H-9]

W ostatnich latach zaobserwowano intensyfikację badań nad poszukiwaniem nowych materiałów o specyficznych właściwościach magnetycznych oraz materiałów półprzewodnikowych 0 właściwościach termoelektrycznych, które znaleźć moga zastosowanie np. w termicznych bezdotykowych przełącznikach prądu elektrycznego o znacznym natężeniu. To zadecydowało, że w ramach współpracy z Instytutem Fizyki Uniwersytetu Śląskiego przeprowadzono badania właściwości elektrycznych i to zarówno związków CrVSbO₆ i FeVSbO₆, jak i roztworu stałego tworzącego się pomiędzy tymi związkami [H-10]. W zakresie tych badań eksperymentalnie wyznaczono wstępne charakterystyki przewodności elektrycznej oraz siły termoelektrycznej w funkcji temperatury dla wspomnianych związków i roztworu stałego $Fe_{1-x}Cr_xVSbO_6$ dla x = 0,05; 0,25; 0,50; 0,75 i 0,90. Przewodnictwo elektryczne badanych faz zmierzono w zakresie temperatur od 76-400K, natomiast siłę termoelektryczną od 300-600K. W wyniku przeprowadzonych badań stwierdzono m.in., że wszystkie zbadane fazy są półprzewodnikami. Przewodnictwo typu n zaobserwowano dla FeVSbO₆ i próbek roztworu stałego bogatszych w żelazo (0<x<0,5), natomiast typu p dla CrVSbO₆ i dla próbek roztworu bogatszych w chrom (x>0,5). Otrzymane wyniki pozwoliły m. in. stwierdzić, że energia aktywacji maleje w temperaturach z zakresu 76–400K wraz ze wzrostem stopnia wbudowania jonów Cr³⁺ w sieć krystaliczną FeVSbO₆ od wartości 0,11 eV dla FeVSbO₆ do 0,05 eV dla CrVSbO₆ w temperaturze 76K i od 0,33 eV do 0,27eV dla tych samych faz w temperaturze 400K. Można, zatem stwierdzić, że przewodnictwo elektryczne Fe_{1-x}Cr_xVSbO₆ wzrasta wraz ze wzrostem wartości x w badanym roztworze stałym **[H-10]**.

Biorąc pod uwagę fakt, że zarówno w związkach, jak i w roztworze stałym występują paramagnetyczne jony Cr^{3+} , Fe^{3+} , V^{4+} w ramach współpracy z Międzynarodowym Laboratorium Silnych Pól Magnetycznych i Niskich Temperatur wyznaczono krzywe magnesowania (wartość magnetyzacji M w zależności od indukcji magnetycznej (μ_0 H) w zakresie od 0 T do 14 T) dla temperatur od 4,2 K do 180 K. W ramach tej części badań wykazano, że wraz ze wzrostem zawartości chromu w Fe_{1-x}Cr_xVSbO₆ moment magnetyczny roztworu stałego w polu o indukcji magnetycznej 14T wzrasta od wartości 0,49 μ_B /f.u. dla FeVSbO₆ do 0,88 μ_B /f.u. dla CrVSbO₆ **[H-10]**. Badania te mogą stanowić inspirację do przeprowadzenia prac w celu znalezienia korelacji pomiędzy właściwościami magnetycznymi a katalitycznymi tych nowych faz.

Wzór i metody syntezy roztworu stałego $Fe_{1-x}Cr_xVSbO_6$ są chronione patentem nr PAT.220458, który został udzielony dnia 03.11.2014 **[H-13]**.

5.6.2. Układ FeSnSbO₆–CrSnSbO₆

Badania kolejnego układu, tj. FeSnSbO₆–CrSnSbO₆ skoncentrowały się na doświadczalnym wykazaniu, że w układzie tym tworzy się ciągły roztwór stały o wzorze Cr_{1-x}Fe_xSnSbO₆ **[H-11]**. W roztworze tym, w porównaniu ze zbadanym wcześniej Fe_{1-x}Cr_xVSbO₆ **[H-9]** w miejsce wanadu wprowadzono cynę. Ze względu na właściwości tlenku cyny(IV) i związków tworzących się z jego udziałem, które powodują ich wszechstronne zastosowanie w różnych gałęziach przemysłu [55–59] wydawało się interesującym zbadanie wpływu obecności cyny zamiast wanadu w strukturze otrzymanego roztworu stałego na niektóre jego właściwości.

Badania rozpoczęto od syntezy znanego tylko w bardzo ograniczonym zakresie związku $CrSnSbO_6$ i badań w celu zweryfikowania jego struktury oraz ustalenia trwałości termicznej w atmosferze powietrza. W konsekwencji tej części badań związek $CrSnSbO_6$ otrzymano zarówno z mieszaniny tlenków $Cr_2O_3/SnO_2/\alpha$ -Sb₂O₄, jak również z równomolowej

mieszaniny osobno otrzymanego CrSbO₄ z SnO₂ **[H–11]**. Wskaźnikowanie dyfraktogramu CrSnSbO₆ potwierdziło, że związek ten wykazuje strukturę rutylu (P4₂/mnm, Z = 2). Ustalono również, że związek CrSnSbO₆ jest trwały w powietrzu do temperatury 1410 \pm 20°C, po czym topi się inkongruentnie z wydzieleniem stałego Cr₂O₃.

W zakresie tej pracy **[H–11]** przeprowadzono również badania, których nadrzędnym celem było wykazanie, że w atmosferze powietrza w układzie Fe₂O₃–SnO₂–α-Sb₂O₄ tworzy się nieznany wcześniej, analogiczny do CrSnSbO₆, związek FeSnSbO₆, ustalenia jego podstawowych danych krystalograficznych i stabilności termicznej. W wyniku tych badań związek FeSnSbO₆ otrzymano zgodnie z następującymi równaniami reakcji:

$$Fe_2O_{3(s)} + 2 SnO_{2(s)} + Sb_2O_{4(s)} + \frac{1}{2}O_{2(g)} = 2 FeSnSbO_{6(s)}$$
(14)

$$FeSbO_{4(s)} + SnO_{2(s)} = FeSnSbO_{6(s)}$$
(15)

Na podstawie wskaźnikowania dyfraktogramu proszkowego FeSnSbO₆ stwierdzono, że związek ten krystalizuje w układzie tetragonalnym, posiada strukturę rutylu i jest izostrukturalny z CrSnSbO₆ **[H–11].** W trakcie badań ustalono również, że związek FeSnSbO₆ topi się inkongruentnie z wydzieleniem stałego Fe₂O₃ w temperaturze $1370 \pm 20^{\circ}$ C.

Otrzymane w ramach dalszej części pracy wyniki **[H–11]** pozwoliły stwierdzić, że w układzie $CrSnSbO_6$ –FeSnSbO₆ tworzy się nowy substytucyjny, ciągły roztwór stały o wzorze $Cr_{1-x}Fe_xSnSbO_6$, gdzie 0<x<1. Roztwór ten został otrzymany w atmosferze powietrza zarówno z odpowiednich mieszanin tlenków SnO_2 , Cr_2O_3 , Fe_2O_3 i α -Sb₂O₄, jak i z osobno syntezowanych związków $CrSnSbO_6$ i FeSnSbO₆ **[H-11]**.

Na podstawie wyników wskaźnikowania dyfraktogramów proszkowych roztworu stałego $Cr_{1-x}Fe_xSnSbO_6$ ustalono, że krystalizuje on w układzie tetragonalnym i posiada strukturę typu rutylu (P4₂/mnm, Z = 2). W tabeli 3 przedstawiono obliczone na podstawie wskaźnikowania dyfraktogramów parametry i objętości komórek elementarnych, gęstość rentgenowską i wyznaczoną doświadczalnie gęstość zarówno dla czystych związków CrSnSbO₆ (x = 0) i FeSnSbO₆ (x = 1), jak i roztworu stałego Cr_{1-x}Fe_xSnSbO₆. Z danych przedstawionych w tabeli 3 wynika, że wraz ze wzrostem parametru x następuje ekspansja sieci krystalicznej, co jest spowodowane wzrostem wielkości wszystkich parametrów komórek elementarnych **[H-11].**

Tabela 3. Parametry i objętości komórek elementarnych, gęstość rentgenowska i doświadczalna związków CrSnSbO₆ (x = 0) i FeSnSbO₆ (x = 1) oraz roztworu stałego Cr_{1-x}Fe_xSnSbO₆

x in Cr _{1-x} Fe _x SnSbO ₆	a = b [nm]	c [nm]	V [nm ³]	d _{rtg} /d _{exp} [g/cm ³]
0,00	0,46421(6)	0,30994(5)	0,06679	6,44/6,49
0,10	0,46447(9)	0,31018(7)	0,06692	6,43/6,48
0,25	0,46490(8)	0,31030(8)	0,06707	6,43/6,46
0,50	0,46561(6)	0,31072(5)	0,06736	6,41/6,43
0,75	0,46657(8)	0,31100(7)	0,06770	6,40/6,40
1,00	0,46726(9)	0,31145(8)	0,06800	6,39/6,38

Wyniki badań metodą IR otrzymanego roztworu stałego również wskazują, że posiada on strukturę typu rutylu, a pasma absorpcji składające się na widma IR są przesunięte w kierunku niższych liczb falowych wraz ze wzrostem x w Cr_{1-x}Fe_xSnSbO₆ **[H-11]**.

Na podstawie przeprowadzonych przy użyciu pirometru optycznego badań i analizy fazowej stopionych próbek ustalono, że otrzymany roztwór stały topi się inkongruentnie z wydzieleniem substytucyjnego roztworu stałego $Cr_{2-y}Fe_yO_3$ tworzącego się pomiędzy Cr_2O_3 i Fe_2O_3 [60], a temperatura jego topnienia obniża się wraz ze stopniem wbudowania jonów Fe^{3+} w sieć krystaliczną $CrSnSbO_6$ i mieści się w zakresie od 1410–1370°C. Na podkreślenie zasługuje fakt, że obecność cyny zamiast wanadu w strukturze otrzymanego roztworu stałego $Cr_{1-x}Fe_xSnSbO_6$ powoduje, że jego stabilność termiczna jest wyższa o ponad 100°C od stabilności roztworu $Fe_{1-x}Cr_xVSbO_6$ [H-9] dla tego samego stopnia wbudowania jonów Fe^{3+} w miejsce jonów Cr^{3+} w sieciach krystalicznych matryc [H-11]. Większa stabilność termiczna otrzymanych roztworów ma istotne znaczenie z punktu widzenia potencjalnego ich zastosowania jako funkcjonalnych materiałów ceramicznych półprzewodnikowych.

Badania w ramach tej pracy rozszerzono o pomiary metodą UV-vis-DR, które pozwoliły ustalić, że zarówno związki FeSnSbO₆ i CrSnSbO₆, jak i roztwór stały Cr_{1-x}Fe_xSnSbO₆ są półprzewodnikami, a wartość przerwy energetycznej dla badanych faz nieznacznie maleje wraz ze wzrostem x w Cr_{1-x}Fe_xSnSbO₆ od wartości E_g = 2,01 eV dla CrSnSbO₆ do E_g = 1,67 eV dla FeSnSbO₆ **[H-11]**. Półprzewodnikowe właściwości tych faz dają podstawę do przeprowadzenia dalszych badań w celu ustalenia możliwości zastosowania ich do wytwarzania czujników gazowych lub mikroprocesorów. W celu wzbogacenia charakterystyki fizykochemicznej otrzymanych faz, ich barwy na podstawie widm UV-Vis-DR, umieszczono w przestrzeni barwowej w systemie $CIEL^*a^*b^*$ [61]. Wartości współrzędnych chromatyczności a^{*} i b^{*} oraz luminancji dla zbadanych próbek podano w tabeli 4.

Wzór	L*	a*	b*	barwa
CrSnSbO ₆	62,81	5,97	16,75	cynamonowa
Fe _{0,25} Cr _{0,75} SnSbO ₆	31,41	13,61	18,39	orzochowo
Fe _{0,50} Cr _{0,50} SnSbO ₆	52,68	17,14	32,52	jaśniejąca
Fe _{0,75} Cr _{0,25} SnSbO ₆	56,08	16,26	36,57	↓
FeSnSbO ₆	56,34	8,80	42,35	jasnobrązowa

Tabela 4. Wartości współrzędnych chromatyczności a^{*} i b^{*} oraz luminancji L* dla zbadanych próbek

Zamieszczone w tabeli 4 wartości L^{*}, a^{*} i b^{*} pozwalają usytuować barwę badanych próbek w obszarze jasnym w zakresie żółcieni-czerwieni.

Wzór i metody otrzymywania roztworu stałego $Cr_{1-x}Fe_xSnSbO_6$ zostały zgłoszone do ochrony patentowej w kraju (Nr zgłoszenia P.400477, data zgłoszenia: 23.08.2012).

W ramach współpracy z Instytutem Fizyki Uniwersytetu Śląskiego przeprowadzono, w ostatnim czasie, badania właściwości elektrycznych związków CrSnSbO₆ i FeSnSbO₆ oraz roztworu stałego tworzącego się pomiędzy tymi związkami. W zakresie tych badań wyznaczono wstępne charakterystyki prądowo-napięciowe i wartości przewodnictwa elektrycznego dla wspomnianych związków i roztworu stałego Fe_{1-x}Cr_xSnSbO₆ dla x = 0,25; 0,50; 0,75 i 0,90. W wyniku przeprowadzonych badań stwierdzono m. in., że wszystkie zbadane fazy są półprzewodnikami. Przewodnictwo zmienia się od typu n do typu p wraz ze wzrostem zawartości żelaza w próbkach, a energia aktywacji maleje od wartości 0,64 eV dla FeSnSbO₆ (x=0) do 0,32 eV dla CrSnSbO₆ (x=1). Wyniki tych badań zostały opisane w pracy mojego współautorstwa pt. "Influence of Cr-substitution on the electrical properties of Fe_{1-x}Cr_xSnSbO₆", która została złożona do opublikowania w redakcji czasopisma Acta Physica Polonica A.

5.7. Fazy o strukturze trójrutylu i ogólnym wzorze MSb₂O₆ (M = Zn, Cu)

Równolegle z badaniami układów trójskładnikowych prowadzono badania reaktywności α -Sb₂O₄ z tlenkami metali (II), takimi jak ZnO i CuO. Z przeglądu literatury wynikało bowiem, że związki o strukturze trójrutylu i ogólnym wzorze MSb₂O₆ tworzą się z udziałem tlenu w dwuskładnikowych układach tlenków MO–Sb₂O₄.

5.7.1.Synteza i właściwości ZnSb₂O₆

Badania rozpoczęto od układu ZnO–Sb₂O₄ **[H-4 i H-6],** który mimo bardzo dobrze poznanych właściwości jego składników, nie był wcześniej przedmiotem wszechstronnych badań pod względem relacji fazowych w całym zakresie stężeń jego składników w stanie stałym w atmosferze powietrza. Również dane dotyczące właściwości związków, które mogą się utworzyć w tym układzie z udziałem tlenu były fragmentaryczne i często sprzeczne. W dostępnej literaturze, np. nie znaleziono informacji dotyczących termicznej trwałości związków ZnSb₂O₆ i Zn₇Sb₂O₁₂.

Na podstawie przeprowadzonych w ramach pracy **[H-4]** badań potwierdzono, że tlenek cynku i tetratlenek diantymonu reagują ze sobą w fazie stałej, w atmosferze powietrza z utworzeniem dwóch związków: $ZnSb_2O_6$ i $Zn_7Sb_2O_{12}$. Związek $ZnSb_2O_6$ wykazuje strukturę trójrutylu, tj. krystalizuje w układzie tetragonalnym, a obliczone parametry jego komórki elementarnej są następujące: a = 0,4665 nm, b = 0,92697 nm, Z = 2.

Drugi związek tworzący się pomiędzy ZnO i α -Sb₂O₄, w atmosferze powietrza otrzymano w wyniku reakcji zachodzącej w mieszaninie tlenków o składzie 87,5% mol ZnO i 12,5% mol α -Sb₂O₄. Badania przedstawione w pracy **[H-4]** wykazały, że Zn₇Sb₂O₁₂ posiada dwie odmiany polimorficzne, co jest zgodne z danymi literaturowymi [62, 63]. Wskaźnikowanie dyfraktogramów proszkowych obu odmian związku Zn₇Sb₂O₁₂ potwierdziło, że α -Zn₇Sb₂O₁₂ krystalizuje w układzie regularnym, natomiast β -Zn₇Sb₂O₁₂ krystalizuje w układzie ortorombowym.

Na podstawie przeprowadzonych badań metodą DTA–TG ustalono, że odmianą $Zn_7Sb_2O_{12}$ stabilną w niskich temperaturach jest odmiana ortorombowa, czyli β -Zn₇Sb₂O₁₂, która ulega odwracalnej przemianie polimorficznej w wysokotemperaturową regularną odmianę α -Zn₇Sb₂O₁₂ w temperaturze 1225°C **[H-4]**.

W dostępnej literaturze nie znaleziono widm IR α -Zn₇Sb₂O₁₂ i β -Zn₇Sb₂O₁₂ i dlatego w dalszej części pracy wykonano badania obu odmian polimorficznych tego związku metodą spektroskopii w podczerwieni **[H-4]**. Pozwoliły one wstępnie ustalić, że struktura obu odmian polimorficznych badanego związku jest zbudowana z oktaedrów SbO₆ i ZnO₆ oraz z

tetraedrów ZnO₄. Symetria poliedrów składających się na strukturę β -Zn₇Sb₂O₁₂ jest znacznie niższa niż w strukturze α -Zn₇Sb₂O₁₂.

Wyniki badań **[H-4, H-6]** przeprowadzonych w atmosferze powietrza metodą DTA–TG wykazały ponadto, że związek ZnSb₂O₆ współistnieje w fazie stałej z α -Sb₂O₄ w atmosferze powietrza tylko do 1050°C. Faza β -Zn₇Sb₂O₁₂ współistnieje zarówno z ZnSb₂O₆, jak i ZnO do temperatury 1225°C, czyli do temperatury przemiany polimorficznej β - w α -Zn₇Sb₂O₁₂. W temperaturze 1250°C następuje rozkład ZnSb₂O₆ do α -Zn₇Sb₂O₁₂ zgodnie z równaniem reakcji:

$$7 ZnSb_2O_{6(s)} = \alpha - Zn_7Sb_2O_{12} + 3 Sb_4O_{6(g)} + 6 O_{2(g)}$$
(16)

Z kolei związek α-Zn₇Sb₂O₁₂ współistnieje z ZnO w powietrzu do 1350°C, tj. do temperatury jego rozkładu:

$$2 \alpha - Zn_7 Sb_2 O_{12(s)} = 14 Zn O_{(s)} + Sb_4 O_{6(g)} + 2 O_{2(g)}$$
(17)

Produktami rozkładu zarówno ZnSb₂O₆ jak i Zn₇Sb₂O₁₂ są substancje stałe i gazowe, tj. Sb₄O₆ i O₂, co istotnie wpływa na ich temperatury rozkładu w atmosferze beztlenowej. W związku z tym przeprowadzono badania DTA–TG w atmosferze argonu **[H-6]**. Wyniki tej części badań pozwoliły stwierdzić, że związek ZnSb₂O₆ współistnieje z α-Sb₂O₄ do temperatury 870°C, natomiast z β-Zn₇Sb₂O₁₂ do temperatury rozkładu ZnSb₂O₆, która w atmosferze argonu wynosi ~998°C (rys. 7).

Rys.7. Krzywe DTA-TG w atmosferze argonu próbek zawierających:

a) 82,35% mol α -Sb₂O₄ i 17,65% mol ZnSb₂O₆,

b) 66,67% mol ZnSb₂O₆ i 33,33% mol Zn₇Sb₂O₁₂

W tej atmosferze faza β -Zn₇Sb₂O₁₂ współistnieje w stanie stałym z ZnO, do temperatury wynoszącej ~1115°C, w której to rozpoczyna się rozkład Zn₇Sb₂O₁₂ zgodnie z równaniem (17) **[H-4, H-6]**.

5.7.2.Synteza i właściwości CuSb₂O₆

Kolejnym obiektem badań był trójskładnikowy układ tlenków CuO– α -Sb₂O₄–V₂O₅, w którym, w jednym z układów go ograniczających, tj. w układzie CuO– α -Sb₂O₄ tworzy się faza CuSb₂O₆ wykazująca strukturę trójrutylu **[H-5]**. Układ ten wybrano do badań ze względu na interesujące właściwości składników tego układu oraz związków tworzących się z ich udziałem [64, 65].

Przezroczyste i przewodzące cienkowarstwowe materiały na bazie tlenków miedzi znajdują coraz szersze zastosowanie w nowej, dynamicznie rozwijającej się dziedzinie łączącej elektronikę i fotonikę - transparentnej elektronice [64]. Z kolei wanadany miedzi są stosowane jako materiał katodowy w akumulatorach litowych [65].

Z przeglądu literatury wynikało, że reaktywność tlenków stanowiących składniki potrójnego układu CuO– α -Sb₂O₄–V₂O₅ w atmosferze powietrza nie była dotychczas zbadana pod względem poszukiwania nowych związków tworzących się w tym układzie z zaangażowaniem wszystkich trzech tlenków. Informacje literaturowe również dotyczące układów bocznych tego układu trójskładnikowego były często niejednoznaczne i fragmentaryczne. Z tej przyczyny badania rozpoczęto od zweryfikowania danych dotyczących liczby i właściwości faz tworzących się w atmosferze powietrza w układzie CuO–Sb₂O₄. Przeprowadzone badania jednoznacznie wykazały, że w wyniku reakcji pomiędzy α -Sb₂O₄ i CuO tworzy się tylko jeden związek, tj. CuSb₂O₆ o strukturze trójrutylu. W syntezie tego związku bierze udział zawarty w powietrzu tlen. Ustalono ponadto, że związek CuSb₂O₆ jest trwały do temperatury ~1200°C, po czym rozkłada się do CuO z jednoczesnym wydzieleniem jako produktów gazowych Sb₄O₆ i O₂ **[H-5]**.

W ramach pracy **[H-5]** wykazano również, że w dwuskładnikowym układzie tlenków $CuO-V_2O_5$ tworzy się pięć związków: CuV_2O_6 , $Cu_2V_2O_7$, $Cu_3V_2O_8$, $Cu_{11}V_6O_{26}$ i $Cu_5V_2O_{10}$ oraz określono sposób i temperatury ich topnienia **[H-5]**.

W efekcie badań reaktywności CuO, V_2O_5 i α -Sb₂O₄ ustalono ostatecznie, że w wyniku reakcji pomiędzy tymi tlenkami w atmosferze powietrza nie tworzy się żadna nowa faza z zaangażowaniem wszystkich reagentów. Badane tlenki w każdym przypadku reagują z utworzeniem związków, które tworzą się w wyniku reakcji V_2O_5 z CuO, CuO z α -Sb₂O₄ oraz V_2O_5 z α -Sb₂O₄ w powietrzu. Skład fazowy badanych próbek po ostatnim etapie

ogrzewania pozwolił wstępnie wyodrębnić z układu CuO– α -Sb₂O₄–V₂O₅ osiem układów cząstkowych, tj.: I - SbVO₅– α -Sb₂O₄–CuSb₂O₆; II - V₂O₅–SbVO₅–CuSb₂O₆; II - V₂O₅–CuSb₂O₆; II - V₂O₅–CuSb₂O₆–CuV₂O₆; IV - CuV₂O₆–CuSb₂O₆–Cu₂V₂O₇; V - Cu₂V₂O₇–CuSb₂O₆–Cu₃V₂O₈; VI - Cu₃V₂O₈–CuSb₂O₆–Cu₁₁V₆O₂₆; VII - Cu₁₁V₆O₂₆–CuSb₂O₆–Cu₅V₂O₁₀ i VIII - Cu₅V₂O₁₀–CuSb₂O₆–CuO **[H-5]**. Oprócz układu cząstkowego – I, wszystkie pozostałe są w rzeczywistości układami składowymi potrójnego układu tlenków CuO–V₂O₅–Sb₂O₅. Świadczy o tym rodzaj współistniejących faz, w których wanad i antymon występują na +5, a miedź na +2 stopniu utlenienia.

Na podstawie temperatur początków pierwszego efektu endotermicznego, rejestrowanego na krzywych DTA próbek o składach odpowiadających danemu układowi cząstkowemu ustalono i podano w pracy **[H-5]** temperatury topnienia lub rozkładu wszystkich mieszanin faz współistniejących w tych podukładach. W tej części badań określono również temperatury, do których współistnieje w stanie stałym w atmosferze powietrza związek o strukturze trójrutylu, tj. CuSb₂O₆ z innymi związkami stanowiącymi składniki odpowiednich rzeczywistych układów, tj. będących liniami koniugacji badanego układu tlenków CuO– α -Sb₂O₄–V₂O₅. Ustalono, m. in., że związek CuSb₂O₆ współistnieje z SbVO₅ do temperatury 710°C, z V₂O₅ do 645°C, z CuV₂O₆ do 800°C, z Cu₂V₂O₇ do 720°C, z Cu₃V₂O₈ do 740°C, z Cu₁V₆O₂₆ do 770°C, a z Cu₅V₂O₁₀ do 810°C **[H-5]**.

5.7.3. Synteza i właściwości roztworu stałego ZnSb_{2-x}Ta_xO₆

Antymoniany i tantalany metali przejściowych o ogólnym wzorze MM'₂O₆ (M=Zn, Cd, Pb, Ni; M'=Sb, Ta) są badane od szeregu lat ze względu na ich ciekawą strukturę, właściwości elektryczne i optyczne [66–70]. W ostatnich latach coraz więcej uwagi poświęca się badaniom zarówno ZnSb₂O₆ **[H-4, H-6]**, jak i ZnTa₂O₆ **[H-12]** ze względu na możliwość zastosowania ich w wielu gałęziach przemysłu. Związek ZnSb₂O₆ dzięki swoim właściwościom może znaleźć zastosowanie w fotokatalizie i czujnikach gazowych do wykrywania tlenków azotu i H₂S [66–68], natomiast ZnTa₂O₆ jako materiał w dielektrycznych urządzeniach mikrofalowych stosowanych w systemach komunikacji satelitarnej [69, 70].

W ramach przeprowadzonych badań układu zbudowanego przez związki ZnSb₂O₆ **[H-4, H-6]** i ZnTa₂O₆ otrzymano nowy roztwór stały o wzorze ZnSb_{2-x}Ta_xO₆ **[H12]**. Roztwór ten tworzy się poprzez wbudowanie jonów Ta⁵⁺ w sieć krystaliczną ZnSb₂O₆ w miejsce jonów Sb⁵⁺. Syntezę nowego roztworu przeprowadzono w atmosferze powietrza zarówno z tlenków ZnO, Ta₂O₅ i Sb₂O₄, jak i związków ZnSb₂O₆ i ZnTa₂O₆ zgodnie z równaniami reakcji:

$$2 ZnO_{(s)} + x Ta_2O_{5(s)} + (2-x) Sb_2O_{4(s)} + \frac{1}{2}O_{2(g)} = 2 ZnSb_{2-x}Ta_xO_{6(r.s.)}$$
(18)

$$(2-x) ZnSb_2O_{6(s)} + x ZnTa_2O_{6(s)} = 2 ZnSb_{2-x}Ta_xO_{6(r.s.)}$$
(19)

Barwa otrzymanego roztworu stałego jest szara, jaśniejąca wraz ze stopniem wbudowania jonów Ta⁵⁺ w sieć krystaliczną ZnSb₂O₆.

W wyniku wykonanych badań wykazano, że powstający substytucyjny roztwór stały posiada ograniczony zakres homogeniczności, a maksymalny stopień substytucji jonów Sb⁵⁺ jonami Ta⁵⁺ osiąga co najwyżej 80 % mol **[H12]**.

Wyniki wskaźnikowania dyfraktogramów proszkowych otrzymanego roztworu stałego oraz badania IR dowiodły, że roztwór posiada strukturę trójrutylu, tj. strukturę jego matrycy - ZnSb₂O₆. Objętość komórki elementarnej, gęstość oraz trwałość termiczna roztworu stałego ZnSb_{2-x}Ta_xO₆ wzrasta wraz ze wzrostem stopnia wbudowania jonów Ta⁵⁺ w sieć krystaliczną ZnSb₂O₆ **[H-12]**.

Roztwór stały ZnSb_{2-x}Ta_xO₆ topi się inkongruentnie w zakresie temperatur od 1270°C dla x=0,25 do 1390°C dla x=1,6 z wydzieleniem jako ciała stałego roztworu o mniejszym stopniu wbudowania jonów Ta⁵⁺ w sieć krystaliczną ZnSb₂O₆ **[H-12]**.

Badania w ramach tej pracy **[H-12]** rozszerzono o pomiary metodą UV-vis-DRS. Na rys. 8 przedstawiono widmo UV-vis związku $ZnSb_2O_6$ o strukturze trójrutylu (krzywa a) oraz widma Uv-vis wybranych próbek roztworu stałego $ZnSb_{2-x}Ta_xO_6$ dla x=0,5; 1,0; 1,5 (krzywe b-d).

Rys. 8. Widma Uv-vis:

- a) $ZnSb_2O_6$ (x = 0,0)
- b) $ZnSb_{1,5}Ta_{0,5}O_6$ (x = 0,5)
- c) $ZnSbTaO_{6} (x = 1,0)$
- d) $ZnSb_{0,5}Ta_{1,5}O_6$ (x = 1,5)

Przeprowadzone badania metodą UV-vis-DRS pozwoliły ustalić, że wielkość przerwy energetycznej dla badanych faz wzrasta wraz ze stopniem wbudowania jonów Ta⁵⁺ w miejsce jonów Sb⁵⁺ w sieć krystaliczną ZnSb₂O₆ od wartości $E_g = 3,49$ eV dla x= 0,25 do $E_g = 4,36$ eV dla x = 1,60. Wyniki tych badań wykazały ponadto, że nowy roztwór stały ZnSb_{2-x}Ta_xO₆ dla 0,25≤x≤1,0 jest półprzewodnikiem, a dla pozostałych wartości x jest izolatorem **[H-12]**.

5.8. Podsumowanie wyników badań

Na podstawie przeprowadzonych badań, których wyniki opisano w publikacjach stanowiących rozprawę habilitacyjną **[H-1–H-13]** wykazano, że:

- W wyniku reakcji tetratlenku diantymonu z wybranymi tlenkami metali (Cr₂O₃, Fe₂O₃, Al₂O₃, V₂O₅, SnO₂, CuO, ZnO, Ta₂O₅), w stanie stałym w atmosferze powietrza lub/i argonu tworzą się nieznane wcześniej związki i fazy typu roztworu stałego, tj.:
 - FeVSbO₆, AIVSbO₆ oraz FeSnSbO₆ związki o strukturze rutylu, należące do rodziny o ogólnym wzorze M^IM^{II}SbO₆ (gdzie M^I=Fe, AI i M^{II}=V, Sn),
 - CrSb_{1-6x}□_xMo_{5x}O₄ roztwór stały o strukturze rutylu i ograniczonej rozpuszczalności składników tworzący się pomiędzy MoO₃ i CrSbO₄, w którym następuje substytucja jonów Sb⁵⁺ jonami Mo⁶⁺ w sieci krystalicznej CrSbO₄, a kompensacja nadmiarowych ładunków dodatnich zachodzi poprzez generowanie luk kationowych w podsieci Sb⁵⁺,
 - Fe_{1-x}Cr_xVSbO₆ i Cr_{1-x}Fe_xSnSbO₆ roztwory stałe ciągłe, o strukturze rutylu, tworzące się w układach FeVSbO₆–CrVSbO₆ i CrSnSbO₆–FeSnSbO₆,
 - ZnSb_{2-x}Ta_xO₆ roztwór stały o strukturze trójrutylu i ograniczonej rozpuszczalności składników tworzący się w układzie ZnSb₂O₆–ZnTa₂O₆,

oraz

- 2. Zbadano właściwości fizykochemiczne nowych związków i faz typu roztworów stałych o ograniczonym i nieograniczonym zakresie rozpuszczalności składników, a w tym:
 - ustalono podstawowe dane krystalograficzne (układ krystalograficzny, parametry i typ komórek elementarnych, liczbę cząsteczek w komórkach elementarnych) oraz wyznaczono gęstość doświadczalną oraz w oparciu o wartości parametrów komórek elementarnych obliczono gęstość rentgenowską tych nowych faz,
 - potwierdzono prawidłowość zaproponowanych wzorów chemicznych nowych faz badaniami metodą SEM/EDX,

- określono trwałość termiczną wszystkich faz w atmosferze powietrza lub/i argonu, tj.
 wyznaczono temperaturę i sposób ich topnienia oraz stałe produkty inkongruentnego topnienia lub temperaturę i produkty ich termicznego rozkładu,
- wykazano, że struktury nowych faz są zbudowane z bardziej lub mniej zdeformowanych oktaedrów MO₆ (M = Cr, Fe, V, Sb, Sn),
- określono wielkość i pokrój kryształów otrzymanych faz,
- opracowano rzuty powierzchni solidus na płaszczyzny stężeń składników badanych w atmosferze powietrza trójskładnikowych układów tlenków: Cr₂O₃–α-Sb₂O₄–MoO₃, Cr₂O₃–α-Sb₂O₄–V₂O₅, CuO–V₂O₅–α-Sb₂O₄, a w szczególności określono zakresy temperatur oraz zakresy stężeń składników tych układów, w których otrzymane nowe fazy współistnieją z innymi fazami tworzącymi się w danym układzie,
- zweryfikowano dane dotyczące liczby i rodzaju faz tworzących się w atmosferze powietrza w wyniku reakcji α-Sb₂O₄ z Cr₂O₃, ZnO, CuO, a w szczególności określono podstawowe właściwości i stabilność termiczną związków o strukturze rutylu lub trójrutylu: CrSbO₄, ZnSb₂O₆, CuSb₂O₆ oraz tworzących się w układzie CuO–V₂O₅, tj. CuV₂O₆, Cu₂V₂O₇, Cu₃V₂O₈, Cu₁₁V₆O₂₆ i Cu₅V₂O₁₀,
- ustalono zakres homogeniczności oraz zbadano wpływ zmiany składu chemicznego w atmosferze powietrza nowych roztworów stałych, tj. faz CrSb_{1-6x}□_xMo_{5x}O₄, Fe_{1-x}Cr_x
 VSbO₆, Fe_{1-x}Cr_xSnSbO₆ i ZnSb_{2-x}Ta_xO₆ na niektóre ich właściwości fizykochemiczne,
- w ramach współpracy z innymi ośrodkami zbadano właściwości magnetyczne i elektryczne roztworu stałego Fe_{1-x}Cr_xVSbO₆, dla x=0,00; 0,05; 0,25; 0,50; 0,75; 0,90 i 1,00.

Zaprezentowane wyniki przeprowadzonych badań mają przede wszystkim wartość poznawczą w zakresie fizykochemii ciała stałego, a w szczególności znacząco wzbogacają wiedzę na temat reaktywności tetratlenku diantymonu z tlenkami metali, zwłaszcza metali delektronowych (Cr_2O_3 , Fe_2O_3 , V_2O_5 , MoO_3 , ZnO, CuO). Badania te uzupełniają dotychczasową wiedzę o chemii związków i faz typu roztworów stałych o strukturze rutylu i trójrutylu, które można otrzymać w wyniku reakcji zachodzącej w atmosferze powietrza lub/i argonu pomiędzy α -Sb₂O₄ i innymi tlenkami.

Uzyskana w ramach tej pracy dość szeroka charakterystyka fizykochemiczna faz tworzących się w badanych układach inspiruje do kontynuowania prac w celu uzupełnienia danych o tych fazach, tj. m. in. zbadania ich właściwości magnetycznych, optycznych i katalitycznych, a w przypadku nowych roztworów stałych planowane są prace mające na celu zbadanie wpływu stopnia wbudowania różnych jonów w sieć krystaliczną tych faz na ich niezbadane jeszcze właściwości. W tym zakresie, w ramach już nawiązanej współpracy z Instytutem Fizyki Uniwersytetu Śląskiego i Międzynarodowym Laboratorium Silnych Pól Niskich Temperatur, kontynuowanie Magnetycznych i sa badania właściwości magnetycznych i przewodnictwa elektrycznego roztworów stałych Cr_{1-x}Fe_xSnSbO₆, ZnSb_{2-x}Ta_xO₆ w funkcji składu chemicznego i temperatury, co pozwoli rozszerzyć spektrum możliwych zastosowań dla tych nowych faz. Kontynuowane są badania nad poszukiwaniem nowych faz tworzących się w atmosferze powietrza z udziałem tetratlenku diantymonu w trójskładnikowych układach ZnO-V₂O₅-Sb₂O₄ [71], La₂O₃-V₂O₅-Sb₂O₄ [72] oraz RE₂O₃-V₂O₅–Sb₂O₄ (RE=Nd, Sm, Gd, Dy) [73]. W przyszłości planuje się także opracowanie innych niż "ciałostałowa" metod syntezy nowych faz, np. metody współstrącania z roztworów odpowiednich soli, sol-żel lub hydrotermalnej, co umożliwiłoby otrzymanie faz o małych rozmiarach krystalitów wręcz nanorozmiarach.

Na podkreślenie zasługuje fakt, że otrzymane wyniki badań już w obecnej formie mogą stanowić podstawę do podjęcia prac o charakterze aplikacyjnym. Bogata charakterystyka fizykochemiczna nowych związków i roztworów stałych może stanowić podstawę do zaprojektowania składu i opracowania metod preparowania np. nowych katalizatorów, które w przyszłości mogą znaleźć zastosowanie w selektywnym otrzymywaniu pożądanych produktów organicznych lub w dopalaniu szkodliwych przemysłowych gazów odlotowych. Prace te wymagają więc kontynuacji przede wszystkim pod kątem zbadania właściwości katalitycznych nowych faz tworzących się w zbadanych układach tlenków oraz znalezienia korelacji pomiędzy strukturą a aktywnością i selektywnością katalizatorów.

5.9. Literatura

- 1. A. Bielański, Podstawy chemii nieorganicznej, PWN, Warszawa, 2004.
- 2. A.F. Wells, Strukturalna chemia nieorganiczna, Wydawnictwa Naukowo-Techniczne, Warszawa, 1993.
- 3. D.J. Stewart, O. Knop, C. Ayasse, F.W.D. Woodhams, Pyrochlores. VII. The Oxides of Antimony: an X-Ray and Mössbauer Study, Can. J. Chem., 50 (1972) 690–700.
- 4. F. Garbassi, XPS and AES study of antimony oxides, Surf. Interface Anal., 2 (1980) 165–169.
- 5. E.D. Weil, S. Levchlik, P. Moy, Flame and smoke retardants in vinyl chloride polymers, Commerial usage and current developments, J. Fire Sci., 24 (2006) 211–236.
- M. Brebu, E. Jakab, Y. Sakata, Effect of flame retardants and Sb₂O₃ synergist on the thermal decomposition of high-impact polystyrene and on its debromination by ammonia treatment, J. Anal. Appl. Pyrolysis, 79 (2007) 346–352.

- D.J. Dzimitropwicz, J.B. Goodenough, P.J. Wiseman, A.C. proton conduction in hydrous oxides, Mater. Res. Bull., 17 (1982) 971–979.
- 8. M. Nalin, Y. Messaddeq, S.J.L. Ribeiro, M. Poulain, V. Briois, Photosensitivity in antimony based glasses, J. Optoelectron. Adv. Mater., 3 (2001) 553–558.
- 9. R. Nilsson, T. Lindblad, A. Anderson, Ammoxidation of propane over antimony–vanadium– oxide catalysts, J. Catal., 148 (1994) 501–513.
- 10. M.O. Guerrero-Pérez, J.L.G. fierro, M.A. Bañares, Effect of the oxide support on the propane ammoxidation with Sb–V–O based catalysts, Catal. Today, 78 (2003) 387–396.
- H. Zhang, J. Zhang, K. Sun, Z. Feng, P. Ying, C. Li, Catalitic performance of Sb–V mixed oxide on Sb–V–O/SiO₂ catalysts in metane selective oxidation to formaldehyde, Catal. Lett., 106 (2006) 89–93.
- 12. B. Irigoyen, A. Juan, S. Larrondo, N. Amadeo, Adsorption reactions of toluene on the (110) vanadium antimonite oxide surface, J. Catal., 201 (2001) 169–182.
- K.T. Li, N.S. Shyu, Catalitic oxidation of hydrogen sulfide to sulfur on vanadium antimonite, Ind. Eng. Chem. Res., 36 (1997) 1480–1484.
- 14. F.J. Berry, Tin-antimony oxide catalysts, Adv. Catal., 30 (1981) 97-131.
- 15. G. Centi, F. Trifiro, Oxidation catalysts based on antimony mixed oxides with rutile-type structure, Catal. Rev. Sci. Eng., 28 (1986) 165–184.
- 16. A. Castelli, N. Ballarini, F. Cavani, New rutile Ga/V/Nb/Sb mixed oxides as catalysts for propane ammoxidation to acrylonitryle, Catal. Today, 192 (2012) 72–79.
- A. Andersson, S.L.T. Andersson, G. Centi, R.K. Grasselli, M. Sanati, F. Trifiro, Direct propane ammoxidation to acrylonitrile: kinetics and nature of the active phase, Stud. Surf. Sci.Catal., 75 (1993) 691–705.
- R.K. Grasselli, Fundamental principles of selective heterogeneous oxidation catalysis, Top. Catal., 21 (2002) 79–88.
- M. Carbucicchio, G. Centi, P. Forzatti, F. Trifiro, P.L. Villa, Propylene oxidation to acrolein on Fe–Sb–Ti–O catalysts, J. Catal., 107 (1987) 307–316.
- 20. N. Ballarini, F. Cavani, S. Di Memmo, F. Zappoli, P. Marion, The role of Sb and Nb in rutiletype Sn/V/Nb/Sb mixed oxides, catalysts for propane ammoxidation to acrylonitrle, Catal. Today, 141 (2009) 264–270.
- 21. M. Cimini, J.M.M. Millet, N. Ballarini, F. Cavani, C. Ciardelli, C. Ferrari, Synthesis, characterization and evaluation as catalysts for propane ammoxidation of VMoSbO systems with rutile-type structure, Catal. Today, 91–92 (2004) 259–264.
- 22. S. Nishiyama, T. Hattori, Electrical conductivity and thermoelectricity of ZnSb₂O₆ and (Zn_{1-x}M_x)Sb₂O₆ (M=Co, Ni, Cu) ceramics, J. Ceram. Soc. Jpn., 108 (2000) 435–438.
- J. Jang, S.-J. Kim, Photoelectrochemical properties of nanocrystalline Sb₆O₁₃, MgSb₂O₆ and ZnSb₂O₆-based electrodes for dye-sensitized solar cells, Jpn. J. Appl. Phys., 51 (2012) 10NE23.

- 24. A. Katsui, K. Hatano, H. Matsushita, Preparation and characterization of solid solutions of TiO₂ and trirutile type MSb₂O₆ (M=Cu, Zn, Mg, Co and Ni), J. Jpn. Soc. Powder Powder Metallurgy, 54 (2007) 479–483.
- 25. J. Singh, N. Bhardwaj, S. Uma, Single step hydrothermal based synthesis of M(II)Sb₂O₆ (M = Cd, Zn) type antimonates and their photocatalytic properties, Bull. Mater. Sci., 36(2) (2013) 287–291.
- C.R. Michel, N.L. López Contreras, M. López-Alvarez, A.H. Martínez-Preciado, Gas selectivity of nanostructured ZnSb₂O₆ synthesized by a colloidal method, Sens. Actuators, B, 171-172 (2012) 686–690.
- 27. P. Berlepsch, T. Armbruster, J. Brugger, A.J. Criddle, S. Graeser, Tripuhyite, FeSbO₄, revisited, Mineralogical Magazine, 67 (2003) 31–46.
- 28. K.R. Nair, M. Greenblatt, W.H. McCarroll, Preparation and electrical conductivity of Cr₂V₂WO₁₀ and Cr₂Nb₂WO₁₀ with the rutile structure, Mater. Res. Bull., 18 (1983) 309–314.
- 29. K.R. Nair, M. Greenblatt, Nonstoichiometry in quaternary transition metal oxides with the rutile structure: a case study of NiV₂Nb₂O₁₀, Mater. Res. Bull., 18 (1983) 1257–1261.
- M. Greenblatt, K.R. Nair, W.H. McCarroll, and J.V. Waszczak, Electrical conductivity and magnetic susceptibility of rutile type CrVNbO₆, FeVNbO₆ and NiV₂Nb₂O₁₀, Mater. Res. Bull., 19 (1984) 777–782.
- 31. K.R. Nair, M. Greenblatt, Preparation of new niobates with the rutile structure, Mater. Res. Bull., 17 (1982) 1057–1060.
- S. Messina, A. Juan, S. Larrondo, B. Irigoyen, N. Amadeo, Theoretical study of the influence of cation vacancies on the catalytic properties of vanadium antimonite, Appl. Sur. Sci., 254 (2008) 5837–5843.
- K. Reuter, M. Scheffler, Composition, structure and stability of RuO₂(110) as a function of oxygen pressure, Phys. Rev. B, 65 (2001) 1–11.
- 34. D. Tauplin, Une methode generale pour l'indexation des diagrammes de poudres, J. Appl. Crystallogr., 1 (1968) 178–181.
- 35. D. Taupin, A powder-diagram automatic-indexing routine, J. Appl. Crystallogr., 6 (1973) 380– 385.
- 36. K. Brandt, X-ray studies on ABO₄ compounds of rutile type and AB₂O₆ compounds of columbite type, Ark. Kemi, Min. Geol., 17A (1943) 1–8.
- 37. J. Amador, I. Rasines, Crystal data for the double oxides MSbO4 (M=Cr, Fe), J. Appl. Crystallogr., 14 (1981) 348–349.
- 38. S. Bahfenne, R.L. Frost, A Review of the Vibrational Spectroscopic Studies of Arsenite, Antimonite, and Antimonate Minerals, Appl. Spectrosc. Reviews, 45 (2010) 101–129.
- 39. R. Franck, C. Rocchiicciolli-Deltcheff, Spectres d'absorption infrarouge d'antmoniates M^ISbO₃ et M^{II}Sb₂O₆, Spectrochim. Acta, 30A (1973) 1–14.

- 40. E. Husson, Y. Repelin, H. Brusset, spectre de vibration et calcul du champ de force des antimoniates et des tantalates de structure trirutile, Spectrochim. Acta, 35A (1979) 1177–1187.
- 41. N. Ballarini, F. Cavani, C. Giunchi, S. Masetti, F. Trifiro, D. Ghisletti, U. Cornaro, R. Catani, Rutile-type Cr/Sb mixed oxides as heterogeneous catalysts for the ammoxidation of propane to acrylonitrle, Top. Catal., 15 (2001) 111–119.
- 42. E.M. Gaigneaux, M.J. Genet, P. Ruiz, B. Delmon, Catalytic behavior of molybdenum suboxides in the selective oxidation of isobutene to methacrolein, J. Phys. Chem. B, 104 (2000) 5724–5737.
- 43. R. Castillo, K. Dewaele, P. Ruiz, B. Delmon, Mechanical mixtures of α -Sb₂O₄ and MoO₃ as highly selective catalysts for the oxidation of methanol to formaldehyde, Appl. Catal. A, 153 (1997) L1–L8.
- 44. H.S. Chin, Y. Cheong, K.A. Razak, Review on oxides of antimony nanoparticles: synthesis, properties and applications, J. Mater. Sci., 45 (2010) 5993–6008.
- 45. J. Isasi, L.M. Veiga, A. Jerez, M.L. Lopez, C. Pico, New antimonate–vanadate with the rutile structure, J. Mater. Chem., 1(6) (1991) 1027–1029.
- 46. N. Ballarini, F. Cavani, D. Ghisletti, R. Catani, U. Cornaro, Cr/V/Sb mixed oxide catalysts for the ammoxidation of propane to acrylonitrile, Catal. Today, 78 (2003) 237–245.
- 47. F.J. Berry, M.E. Brett, R.A. Marbrow, W.R. Patterson, An X-ray photoelectron spectroscopic study of the surface properties of vanadium antimonite and β-antimony tetraoxide, J. Chem. Soc. Dalton Trans., (1984) 985–987.
- 48. M. Kurzawa: Infrared spectra of FeVMoO₇ and Fe₄V₂Mo₃O₂₀. J. Mater. Sci. Lett., 11 (1992) 976–979.
- 49. F. Sala, F. Trifiro, Relationship between structure and activity of antimony mixed oxides in 1butene oxidation, J. Catal., 41(1976) 1–13.
- 50. E.J. Baran, I.L. Botto, Kristallographische daten und IR-spektrum von AIVO₄, Monatsh. Chem. 108 (1977) 311–318.
- 51. J. Preudhomme, P. Tarte, Infrared studies of spinels. The normal II-III spinels, Spectrochim. Acta, 27A (1971) 1817–1835.
- R. Iordanova, Y. Dimitriev, V. Dimitriov, D. Klissurski, Structure of V₂O₅-MoO₃-Fe₂O₃ glasses, J. Non-Cryst. Solids, 167 (1994) 74–80.
- 53. J. Hanuza, K. Hermanowicz, W. Ogonowski, B. Jeżowska-Trzebiatowska, The structure of the active V₂O₅/MgO catalyst layer on the basis of IR and Raman spectroscopie data, Bull. Acad. Pol. Sci. Chem., 31 (1983) 139–151.
- 54. J. Muller, J.C. Joubert, Synthese sous haute pression d'oxygene d'une forme dense ordonne'e de FeVO₄ et mise en evidence d'une varie'te'allotropique de structure CrVO₄, J. Solid State Chem., 14 (1975) 8–13.

- 55. M. Batzill, U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci., 79 (2005) 47–154.
- 56. I. Saadeddin, B. Pecquenard, J.P. Manaud, R. Decourt, C. Labrugère, T. Buffeteau, G. Campet, Synthesis and characterization of single- and co-doped SnO₂ thin films for optoelectronic applications, Appl. Surf. Sci., 253 (2007) 5240–5249.
- 57. W. Chen, Q. Zhou, T. Gao, X. Su, F. Wan, Pd-doped SnO₂-based sensor detecting characteristic fault hydrocarbons gases in transformer oil, J. Nanomater.,1 (2013) 1–9.
- 58. Z. Nabi, A. Kellou, S. Mecabin, A. Khalfi, N. Benosman, Opto-electronic properties of rutile SnO₂ and orthorhombic SnS and SnSe compounds, Mater. Sci. Eng., B98 (2003) 104–115.
- 59. M. Caldararu, A. Ovenston, D. Spinceana, J.R. Walls, N.I. Ionescu, Surface dynamics in tin dioxide-containing catalysts III Catalysis and the surface conductivity of antimony-doped tin dioxide, Appl. Catal. A, 141 (1996) 31–34.
- 60. J.K. Srivastava, S. Muralidhara Rao, Search for reclustering of Fe^{3+} ions in the incompletely annealed Cr_2O_3 -Fe₂O₃ solid solutions, Phys. Status Solidi (b) 90 (1978) K 175-K177.
- CIE. Recommendations on uniform colour spaces, colour difference equations, psychometrics colour terms. In Supplement No. 2 of CIE Publ. No. 15 (E1–1.31)1971. Paris: Bureau Central de la CIE; 1978.
- 62. R.C. Linares, A.D. Mills, Growth of 7ZnO·Sb₂O₅ spinel crystals, Acta Cryst., 15 (1962) 1048.
- 63. W. Ruβwurm, R. Bruchhaus, Structural data of β-Zn₇Sb₂O₁₂, Naturwissenschaften, 73 (1986)
 562.
- 64. N. Chaglabou, F.Ch. Akkari, M. Kanzari, Studies on structural and optical properties of Cu– Sb–O thin films, Phys. Status Solidi C, 7 (2010) 2321–2325.
- 65. Y. Sakurai, H. Ohtsuka, J. Yamaki, Rechargeable copper vanadate cathodes for lithium cell, J. Electrochem. Soc., 135 (1988) 32–36.
- 66. S. Wu, G. Li, Y. Zhang, W. Zhang, Surface photoelectric and visible light photocatalytic properties of zinc antimonate-based photocatalysts, Mat. Res. Bull., 48 (2013) 1117–1121.
- 67. Y. Yamada, K. Yamashita, Y. Masuoka, Y. Seno, Zn–Sn–Sb–O thin film sensor for ppm–level NO₂ detection, Sens. Actuators B, 77 (2001) 12–15.
- J. Tamaki, Y. Yamada, Y. Yamamoto, M. Matsuoka, I. Ota, Sensing properties to di lute hydrogen silfide of ZnSb₂O₆ thick-film prepared by dip-coating method, Sens. Actuators B, 66 (2000) 70–73.
- H.J. Lee, I.T. Kim, K.S. Hong, Dielectric properties of AB₂O₆ compounds at microwave frequencies (A=Ca, Mg, Mn, Co, Ni, Zn and B=Nb, Ta), Jpn. J. Appl. Phys., 36 (1997) 1318–1320.
- 70. A. Kan, H. Ogawa, H. Ohsato, Influence of microstructure on microwave dielectric properties of ZnTa₂O₆ ceramics with low dielectric loss, J. Alloy. Compd., 337 (2002) 303–308.

- 71. E. Filipek, G. Dąbrowska, "Reaktywność SbVO₅ wobec wanadanów(V) cynku i antymonianów(V) cynku", Mat. IX Krajowe Seminarium im. Prof. St. Bretsznajdera, 2007, Płock, str. 282–287.
- 72. G. Dąbrowska, E. Filipek, Reinvestigation of the phases in the system V₂O₅–La₂O₃, Proc. 11th Conference on Calorimetry and Thermal Analysis (CCTA 11), 2012, Zakopane, Book of Abstract, p. 38.
- 73. G. Dąbrowska, E. Filipek, P. Florczak, "Reactivity of oxides occurring in the ternary α-Sb₂O₄– V₂O₅-RE₂O₃ (RE=Nd, Sm, Gd, Dy) system in air", Proc. 10th Conference on Calorimetry and Thermal Analysis join with 2nd Czech – Hungarian – Polish - Slovakian Thermoanalytical Conference, 2009, Zakopane, Book of Abstract, p.39.

6. Omówienie pozostałych osiągnięć naukowo-badawczych

Praca magisterska pt.: "Zastosowanie procesów membranowych: odwróconej osmozy i ultrafiltracji do oczyszczania wody i ścieków z Papierni Skolwin" rozpoczęła, trwające do dzisiaj, moje zainteresowanie badaniami o charakterze naukowym. Celem tej pracy było zbadanie przydatności procesów membranowych do oczyszczania wody i ścieków w przemyśle papierniczym. W ramach pracy zaprojektowano instalację, przy pomocy, której ustalono charakterystyke membran rurowych wykonanych z octanu celulozy i polichlorku winylu (PCW). Membrany z wyznaczoną charakterystyką zastosowano w procesie ultrafiltracji do usuwania zawiesin z wody i ścieków uzyskując 90% stopień oddzielenia. Proces ultrafiltracji zastosowano również do oczyszczania ścieków z korowalni, tj. z działu papierni, w którym odbywa się zdejmowanie z powierzchni drewna kory, gdzie uzyskano ponad 50% redukcję biologicznego zapotrzebowania na tlen (BZT₅) i chemicznego zapotrzebowania na tlen (ChZT). Zbadano także możliwość zastosowania odwróconej osmozy do oczyszczania ścieków z korowalni, stosując wstępne ich oczyszczenie metodą ultrafiltracji. Pozwoliło to zredukować BZT₅ o 96%, ChZT o 99%, suchą pozostałość o 91%, przewodność o 93% i mętność ścieków o 95%. Wyniki badań otrzymane w ramach mojej pracy magisterskiej były prezentowane w trakcie Krajowej Konferencji "Promocja Nauki i Techniki Ochrony Środowiska Morza i Przymorza" i opublikowane w formie artykułu w materiałach konferencyjnych (K. Karakulski, A. Morawski, W. Paterkowski, G. Dąbrowska, "Zastosowanie procesów membranowych: odwróconej osmozy i ultrafiltracji do oczyszczania ścieków z Papierni "Skolwin", Materiały konferencji: "Promocja Nauki i Techniki. Ochrona Środowiska Morza i Przymorza", Świnoujście, 1992, str. 110–116).

Brak możliwości zatrudnienia mnie w Zakładzie Technologii Wody i Ochrony Atmosfery Instytutu Technologii Chemicznej zadecydował, że nie mogłam kontynuować rozpoczętych, w ramach pracy magisterskiej, badań. W 1992 roku rozpoczęłam pracę zawodową w Zakładzie Chemii Nieorganicznej Instytutu Chemii Podstawowej Wydziału Technologii i Inżynierii Chemicznej (obecnie Zakład Chemii Nieorganicznej w strukturach Katedry Chemii Nieorganicznej i Analitycznej) w zespole naukowym kierowanym wówczas przez dr hab. Jadwigę Walczak. Wiązało się to ze znaczną zmianą profilu badawczego. Od tego czasu dziedziną moich zainteresowań naukowo-badawczych jest przede wszystkim chemia i fizykochemia ciała stałego.

W mojej dotychczasowej działalności naukowo-badawczej można wyróżnić trzy główne etapy:

- A: działalność naukowo-badawcza do czasu uzyskania stopnia doktora,
- B: zespołowa działalność naukowo-badawcza po uzyskaniu stopnia doktora,
- C: działalność naukowo-badawcza związana z rozprawą habilitacyjną.

A. Badania naukowe prowadzone do uzyskania stopnia naukowego doktora nauk chemicznych w zakresie chemii

Od października 1992 r., tj. od momentu mojego zatrudnienia w Zakładzie Chemii Nieorganicznej, rozpoczęłam, w ramach mojej pracy doktorskiej, badania trójskładnikowego układu tlenków Al₂O₃–V₂O₅–MoO₃, który w świetle przeprowadzonych studiów literaturowych, nie był przed badaniami prowadzonymi w ZChN w ogóle przedmiotem badań. Wyniki badań tego układu stanowiły więc nowość naukową. Kilkuletnie (1992–2000) prace nad tym układem, częściowo finansowane w ramach grantu promotorskiego KBN nr 3T09A 095 16, którego byłam głównym wykonawcą pozwoliły na otrzymanie ciekawych wyników, które opublikowano w dziewięciu artykułach w czasopismach zagranicznych, takich jak:

- Maria Kurzawa, Grażyna Dąbrowska, "Subsolidus area of the AIVO₄-Al₂(MoO₄)₃ system", J. Therm. Anal., 45 (1995) 1043–1048,
- Maria Kurzawa, Grażyna Dąbrowska, "Subsolidus phase equilibria in the system AIVO₄-MoO₃", J. Therm. Anal., 45 (1995) 1049–1053,
- Maria Kurzawa, Grażyna Dąbrowska, "Phase diagram of the AIVO₄–MoO₃ system", Polish J. Chem., 70 (1996) 417–422,
- Maria Kurzawa, Grażyna Dąbrowska, "Phase equilibria in the AIVO₄-Al₂(MoO₄)₃ system", J. Phase Equilib., 18 (1997) 147–151,
- Maria Kurzawa, Grażyna Dąbrowska, "Reactivity of Al₂(MoO₄)₃ with V₂O₅ in the solid state", Solid State Ionics, 101-103 (1997) 1189–1193,

- Karsten Knorr, Paweł Jakubus, Grażyna Dąbrowska, Maria Kurzawa, "Crystal structure determination of AIVMoO₇ from X-ray powder diffraction data", Eur. J. Solid State Inorg. Chem., 35 (1998) 519–530,
- Maria Kurzawa, Grażyna Dąbrowska, "Phase equilibria in the system V₉Mo₆O₄₀– AIVMoO₇", J. Therm. Anal. Calorim., 55 (1999) 243–247,
- Maria Kurzawa, Grażyna Dąbrowska, "Studies on the AIVMoO₇-V₂O₅ system", J. Therm. Anal. Calorim., 56 (1999) 217–222,
- Maria Kurzawa, Grażyna Dąbrowska, "Phase relations in the Al₂(MoO₄)₃-V₂O₅ system", J. Therm. Anal. Calorim., 60 (2000) 183–186.

Wyniki tych badań również zaprezentowano w 10. komunikatach na międzynarodowych i krajowych konferencjach:

- Conference on Calorimetry and Thermal Analysis "CCTA" (Zakopane-1994),
- Conference on Solid State Chemistry SSC (Bratislava-1996, Praque-2000),
- XIII International Symposium on the Reactivity of Solids (Hamburg-1996),
- VIIth European Symposium on Thermal Analysis and Calorimetry (Hungary, Balatonfüred–1998),
- VII Krajowe Seminarium im. St. Bretsznajdera (Zakopane–1998),
- VIIth European Conference on Solid State Chemistry (Madrid–1999).

W tym okresie zatrudnienia, za twórcze osiągnięcia naukowe, otrzymałam nagrodę indywidualną JM Rektora Politechniki Szczecińskiej w kategorii młodych pracowników nauki w roku 1997 oraz nagrodę zespołową I stopnia w 2000 roku.

Rezultaty tych badań stanowiły również integralną część mojej rozprawy doktorskiej nt.: "Studia nad układem Al₂O₃–V₂O₅–MoO₃", którą wykonałam pod kierunkiem prof. dr hab. inż. Marii Kurzawy (recenzenci: prof. dr hab. inż. Teresa Znamierowska z Katedry Chemii Nieorganicznej AE we Wrocławiu i prof. dr hab. Florian Domka z UAM w Poznaniu) i obroniłam w 2000 roku na Wydziale Chemii Uniwersytetu im. Adama Mickiewicza w Poznaniu. W 2000 r. za pracę doktorską otrzymałam nagrodę JM Rektora Politechniki Szczecińskiej.

Do najważniejszych osiągnięć z tego okresu mojej pracy należy skonstruowanie diagramów równowag fazowych ustalających się do 1000° C w całym zakresie stężeń składników układów będących siedmioma przekrojami układu trójskładnikowego Al₂O₃–V₂O₅–MoO₃, tj. AlVO₄–MoO₃, V₉Mo₆O₄₀–Al₂(MoO₄)₃, V₉Mo₆O₄₀–AlVMoO₇, AlVMoO₇–Al₂(MoO₄)₃, AlVO₄–AlVMoO₇, AlVO₄–Al₂(MoO₄)₃, Al₂(MoO₄)₃–V₂O₅, weryfikacja diagramu

fazowego układu Al₂O₃–V₂O₅ oraz opracowanie diagramu fazowego układu Al₂O₃–MoO₃. Wszystkie skonstruowane diagramy stanowią bogate źródło informacji dotyczących liczby, rodzaju i właściwości termicznych związków i faz tworzących się w danym układzie, informują również o zakresie stężeń składników i temperatury, w których współistnieją te związki i fazy z innymi. Takie informacje posiadają szczególne znaczenie w przypadkach gdy badany układ budują aktywne katalitycznie składniki bowiem pozwalają zaprojektować skład katalizatora odpowiedni dla danego zakresu temperatur i typu reakcji chemicznej. W oparciu o analizy równowag fazowych ustalających się w badanych przekrojach oraz wyniki badań weryfikujących układy boczne konstytuujące układ trójskładnikowy, w ramach mojej pracy doktorskiej opracowano diagram fazowy obszaru solidus układu Al₂O₃–V₂O₅–MoO₃ w całym zakresie stężeń jego składników.

Niezależnie od badań równowag fazowych równolegle prowadzono prace nad udokładnieniem struktury AIVO₄ metodą Rietvelda, z wykorzystaniem programu Fullprof. W wyniku przeprowadzonych prac ustalono, że związek AIVO₄ krystalizuje w układzie trójskośnym, grupa przestrzenna P-1, Z = 6, a parametry jego komórki elementarnej są następujące: a = 6,5323(1) Å, b = 7,7498(2) Å, c = 9,1233(3) Å, $\alpha = 96,175(2)^{\circ}$, $\beta = 107,234(3)^{\circ}$, $\gamma = 101,404(3)^{\circ}$.

Udział w tych pracach umożliwił mi poznanie podstawowych technik badawczych stosowanych w badaniach z zakresu chemii ciała stałego, takich jak: dyfrakcja promieniowania rentgenowskiego (XRD) i różnicowa analiza termiczna połączona z analizą termograwimetryczną (DTA–TG) oraz pozwolił dodatkowo zapoznać się z tematyką dotyczącą reaktywności ciał stałych i równowag fazowych ustalających się w dwu- i pseudodwuskładnikowych układach. W tym okresie poznałam sposób konstruowania diagramów fazowych badanych układów w oparciu o wyniki XRD i DTA próbek w stanie równowagi.

W okresie prowadzenia badań związanych z rozprawą doktorską miałam 16 miesięczną przerwę w świadczeniu pracy związaną z urodzeniem w 1996 r. córki Dominiki Marii Dąbrowskiej.

B. Badania naukowe prowadzone po uzyskaniu stopnia naukowego doktora nauk chemicznych

Bezpośrednio po uzyskaniu stopnia naukowego doktora nauk chemicznych, tj. od 2000 r. uczestniczyłam w badaniach reaktywności i niektórych właściwości oraz struktury faz tworzących się w trójskładnikowych układach tlenków metali, tj. w układach: Cr₂O₃–V₂O₅–

MO, gdzie M = Ni, Zn i Mg. W wyniku przeprowadzonych badań ustalono, że w układach tych tworzą się z zaangażowaniem trzech tlenków związki o ogólnym wzorze M₂CrV₃O₁₁ (M = Ni, Zn, Mg). Związki te otrzymano w wyniku reakcji biegnących w stałym stanie skupienia zgodnie z następującymi równaniami:

 $\begin{array}{l} 4 \ \text{MO}_{(s)} + 3 \ \text{V}_2 \text{O}_{5(s)} + \text{Cr}_2 \text{O}_{3(s)} = 2 \ \text{M}_2 \text{Cr} \text{V}_3 \text{O}_{11(s)} \\ \\ \text{M}_2 \text{V}_2 \text{O}_{7(s)} + \text{Cr} \text{VO}_{4(s)} = \text{M}_2 \text{Cr} \text{V}_3 \text{O}_{11(s)} \\ \\ 3 \ \text{M}(\text{VO}_3)_{2(s)} + \text{MCr}_2 \text{O}_{4(s)} = 2 \ \text{M}_2 \text{Cr} \text{V}_3 \text{O}_{11(s)} \end{array}$

W zakresie tych badań wykazano, że nowe związki M₂CrV₃O₁₁ (M = Ni, Zn, Mg) są izostrukturalne i krystalizują w układzie trójskośnym. Obliczono parametry ich komórek elementarnych i określono trwałość termiczną tych związków. Na podstawie analizy widm IR nowych związków wstępnie ustalono, że w ich strukturze obecne są między innymi silnie zdeformowane tetraedry VO₄. W ramach wykonanych badań opracowano również diagram równowag fazowych układu MgV₂O₆–MgCr₂O₄ do linii solidus.

Efekty badań przeprowadzonych w tym okresie mojej pracy zostały zaprezentowane w dwóch komunikatach na zagranicznych konferencjach oraz opublikowane w dwóch artykułach:

- M. Kurzawa, I. Rychłowska–Himmel, A. Błońska–Tabero, M. Bosacka, G. Dąbrowska, "Synthesis and characterization of new compounds Ni₂CrV₃O₁₁ and Zn₂CrV₃O₁₁", Solid State Phenomena, 90-91 (2003) 347–352,
- M. Kurzawa, I. Rychłowska–Himmel, M. Bosacka, G. Dąbrowska, "A new compound Mg₂CrV₃O₁₁ and phase relations in the MgV₂O₆–MgCr₂O₄ system in the solid state", Solid State Phenomena, 90-91 (2003) 353–358.

Nowe fazy o ogólnym wzorze $M_2CrV_3O_{11}$ (M = Ni, Zn, Mg) i sposób ich otrzymywania objęte są ochroną patentową od 2008 roku:

M. Kurzawa, M. Bosacka, **G. Dąbrowska**, Nowa oksysól w trójskładnikowym układzie tlenków metali i sposób wytwarzania nowej oksysoli w trójskładnikowym układzie tlenków metali, P196718, data udzielenia patentu: 31.01.2008.

Po uzyskaniu stopnia doktora nauk chemicznych opublikowałam również pracę bezpośrednio związaną z badaniami prowadzonymi w ramach przewodu doktorskiego:

G. Dąbrowska, P. Tabero, M. Kurzawa, "Phase relations in the $AI_2O_3-V_2O_5-MoO_3$ system in the solid state. The crystal structure of $AIVO_4$ ", J. Phase Equilib. Diff., 30(3) (2009) 220–229.

Od 2009 roku, tj. równolegle z pracami prowadzonymi nad moją rozprawą habilitacyjną uczestniczę także w badaniach dotyczących reaktywności, w fazie stałej, molibdenianów(VI) oraz wolframianów(VI) metali *d*-elektronowych z molibdenianami(VI) lub wolframianami(VI) metali ziem rzadkich. Prace te wykonywane były częściowo w ramach projektu badawczego pt. *"Synteza i charakteryzacja nowych materiałów, potencjalnych matryc laserowych i luminoforów, otrzymywanych na bazie wolframianów(VI) i molibdenianów(VI) metali ziem rzadkich"* (nr 3369/B/H03/2009/37; okres realizacji 2009–2012) finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego, w którym jako wykonawca brałam aktywny udział.

W wyniku tych prac zidentyfikowano oraz przeprowadzono syntezy nieopisanych wcześniej w literaturze nowych związków i faz, które pogrupowano w następujące rodziny:

- molibdeniano(VI) wolframiany(VI) cynku i metali ziem rzadkich:
 ZnRE₂MoWO₁₀, gdzie RE = Sm, Eu, Gd, Dy,
- molibdeniano(VI) wolframiany(VI) kadmu i metali ziem rzadkich: Cd_{0,25}□_{0,25} RE_{0,5}(MoO₄)_{0,25}(WO₄)_{0,75}, gdzie RE = Pr, Nd, Sm–Dy, Cd_{1-3x}□_xRE_{2x}(MoO₄)_{1-3x}(WO₄)_{3x} dla 0<x≤0,25, gdzie RE = Nd, Sm, Dy,
- molibdeniany(VI) kadmu i metali ziem rzadkich:
 Cd_{1-3x}□_xRE_{2x}MoO₄ dla 0<x≤0,25, gdzie RE = Nd, Sm, Dy.

W ramach przeprowadzonych badań określono podstawowe dane krystalograficzne nowych związków i roztworów stałych, określono typ struktury (jako strukturę typu szelitu) w przypadku faz $Cd_{0,25}\Box_{0,25}RE_{0,5}(MoO_4)_{0,25}(WO_4)_{0,75}$ (RE = Pr, Nd, Sm–Dy) oraz roztworów stałych $Cd_{1-3x}\Box_x RE_{2x}(MoO_4)_{1-3x}(WO_4)_{3x}$ i $Cd_{1-3x}\Box_x RE_{2x}MoO_4$ (RE = Nd, Sm, Dy) oraz ustalono typ koordynacji jonów Mo⁶⁺ oraz W⁶⁺ poprzez jony tlenu w nowych związkach i fazach. W dalszym toku badań ustalono stabilność termiczną nowych związków i faz, a w szczególności: sposób i temperaturę topnienia, produkty inkongruentnego topnienia lub temperaturę i stałe produkty rozkładu termicznego tych faz. W ramach współpracy z innymi ośrodkami badawczymi ustalono rodzaj oddziaływań magnetycznych (ferromagnetyczne lub antyferromagnetyczne) pomiędzy jonami paramagnetycznymi RE^{3+} oraz wyznaczono wartości temperatur Curie-Weissa. Przeprowadzone badania znacząco poszerzyły wiedzę na temat chemii pierwiastków *d*- i *f*-elektronowych. Nowe materiały ze względu na swoją wysoka trwałość termiczną i interesujące właściwości fizykochemiczne mogą być stosowane w przemyśle optoelektronicznym, zbrojeniowym i medycynie jako materiały luminescencyjne (głównie lasery krystaliczne i scyntylatory), do produkcji wyświetlaczy i monitorów ciekłokrystalicznych (LCDs), a także diod emitujących głównie światło białe (LEDs).

Efekty przeprowadzonych prac dotyczących tej tematyki badawczej zostały zaprezentowane w 10. komunikatach na zagranicznych (7) i krajowych (3) konferencjach oraz opublikowane w czterech artykułach w czasopismach o obiegu światowym (z IF):

- E. Tomaszewicz, G. Dąbrowska, "Reactivity in the solid state between ZnWO₄ and some rare-earth metal molybdates RE₂MoO₆ (RE=Y, Sm, Eu, Gd, Dy, Ho, Er and Lu), J. Therm. Anal. Calorim., 94 (2008) 189–194,
- E. Tomaszewicz, G. Dąbrowska, S.M. Kaczmarek, H. Fuks, "Solid-state synthesis and characterization of new cadmium and rare-earth metal molybdato-tungstates Cd_{0.25}RE_{0.50}(MoO₄)_{0.25}(WO₄)_{0.75} (RE=Pr, Nd, Sm-Dy)", J. Non-Cryst. Solids, 356 (2010) 2059–2065,
- E. Tomaszewicz, **G. Dąbrowska**, "New cadmium and rare-earth metal molybdatotungstates with scheelite-type structure", J. Therm. Anal. Calorim., 101 (2010) 417– 422,
- S.M. Kaczmarek, G. Leniec, H. Fuks, E. Tomaszewicz, G. Dąbrowska, T. Skibiński, "EPR properties of some new cadmium and rare-earth molybdates, molybdatotungstates and their solid solutions", J. Alloy. Compd., 520 (2012) 195–201.

Wyniki tych badań stanowią również treść dwóch rozdziałów w monografiach:

- E. Tomaszewicz, G. Dąbrowska, "Synteza i charakteryzacja nowych roztworów stałych na bazie molibdenianów(VI) i wolframianów(VI) metali ziem rzadkich", "Nauka i przemysł metody spektroskopowe w praktyce, nowe wyzwania i możliwości", UMCS, Lublin, 2012, ISBN 978-83-7784-086-3, str. 310–316,
- E. Tomaszewicz, G. Dąbrowska, "Zastosowanie spektroskopii w podczerwieni w badaniach nowych molibdenianów(VI) i molibdeniano(VI)-wolframianów(VI) kadmu i metali ziem rzadkich", "Nauka i przemysł metody spektroskopowe w praktyce, nowe wyzwania i możliwości", UMCS, Lublin, 2011, ISBN 978-83-227-3227-4, str. 37–44.

Nowe związki i fazy tworzące się w wyniku reakcji molibdenianów(VI) oraz wolframianów(VI) metali *d*-elektronowych z molibdenianami(VI) lub wolframianami(VI) metali

ziem rzadkich, a w szczególności metody ich otrzymywania stanowią treść trzech udzielonych w latach 2011–2014 patentów krajowych i trzech zgłoszeń patentowych:

- E. Tomaszewicz, G. Dąbrowska, Oksysól w dwuskładnikowym układzie wolframianu cynku i molibdenianów metali i sposób wytwarzania oksysoli w dwuskładnikowym układzie wolframianu cynku i molibdenianów metali, patent P 209574, data udzielenia patentu: 23.09.2011,
- E. Tomaszewicz, G. Dąbrowska, S. Kaczmarek, H. Fuks, Sposób wytwarzania oksysoli w dwuskładnikowym układzie molibdenianu(VI) kadmu i wolframianów(VI) metali, patent P 213464, data udzielenia patentu: 25.03.2013,
- E. Tomaszewicz, G. Dąbrowska, E. Filipek, Fazy typu ciągłych roztworów stałych w dwuskładnikowym układzie diwolframianów(VI) metali ziem rzadkich i sposoby wytwarzania faz typu ciągłych roztworów stałych w dwuskładnikowym układzie diwolframianów(VI) metali ziem rzadkich, patent P.219933, data udzielenia patentu: 28.11.2014,
- E. Tomaszewicz, G. Dąbrowska, E. Filipek, Fazy typu roztworów stałych o ograniczonej rozpuszczalności składników w dwuskładnikowym układzie związków neodymu(III) i sposoby wytwarzania faz typu roztworów stałych o ograniczonej rozpuszczalności składników w dwuskładnikowym układzie związków neodymu(III), zgłoszenie patentowe nr P.400730, 11.09.2012,
- E. Tomaszewicz, G. Dąbrowska, Oksysól w dwuskładnikowym układzie wolframianu(VI) metalu – molibdenianu(VI) pierwiastka ziem rzadkich i sposoby wytwarzania oksysoli w dwuskładnikowym układzie wolframianu(VI) metalu – molibdenianu(VI) pierwiastka ziem rzadkich, zgłoszenie patentowe nr P.401266, 17.10.2012,
- E. Tomaszewicz, G. Dąbrowska, E. Filipek, Fazy typu roztworów stałych o ograniczonej rozpuszczalności składników w dwuskładnikowym układzie związków prazeodymu(III) i sposoby wytwarzania faz typu roztworów stałych o ograniczonej rozpuszczalności składników w dwuskładnikowym układzie związków prazeodymu(III), zgłoszenie patentowe nr P.400729, 11.09.2012.

W dalszym ciągu kontynuowane są badania, zmierzające przede wszystkim do ustalenia właściwości magnetycznych, elektrycznych i optycznych nowych faz tworzących się w układach budowanych przez molibdeniany(VI) oraz wolframiany(VI) *d*-elektronowych metali z molibdenianami(VI) lub wolframianami(VI) metali ziem rzadkich. Badania te

odbywają się w ramach współpracy z innymi placówkami naukowymi, między innymi z Zakładem Fizyki Ciała Stałego Instytutu Fizyki ZUT, Zakładem Fizyki Kryształów Instytutu Fizyki Uniwersytetu Śląskiego oraz z Laboratorium Spektroskopii Luminescencyjnej Wydziału Chemii Uniwersytetu Wrocławskiego.

Obecnie poza wymienionymi badaniami prowadzone są i takie prace, które koncentrują się miedzy innymi na poszukiwaniu roztworów stałych o nieograniczonej i ograniczonej rozpuszczalności składników, tworzących się z udziałem Cu₅SbO₆. Związek ten ze względu na mieszaną walencyjność jonów miedzi był obiektem naszych badań pod kątem właściwości elektrycznych i magnetycznych. Wyniki tych badań zostały opublikowane w artykule:

T. Groń, E. Filipek, **G. Dąbrowska**, H. Duda, S. Mazur, Z. Kukuła, S. Pawlus, "Semiconducting properties of Cu_5SbO_6 ", Acta Phys. Pol. A, 122 (2012) 1105–1107.

C. Badania naukowe związane z rozprawą habilitacyjną

Wyniki badań, które stanowią integralną część mojej rozprawy habilitacyjnej, a dotyczą nowych faz o strukturze rutylu i trójrutylu tworzących się z udziałem tetratlenku diantymonu zostały przedstawione w punkcie 4. i 5. tego opracowania.

Za twórcze osiągnięcia naukowe w latach 2008–2012 otrzymałam indywidualne nagrody JM Rektora Politechniki Szczecińskiej (obecnie ZUT): w latach 2008 (III stopnia), 2010 (III stopnia) i 2012 (II stopnia).

Po uzyskaniu stopnia doktora nauk chemicznych miałam ok. 3 letnią przerwę w świadczeniu pracy związaną z urodzeniem następnych dzieci, tj. w 2002 r. syna Damiana Wojciecha Dąbrowskiego i w 2005 r. syna Norberta Jana Dąbrowskiego.

Dane scjentometryczne osiągnieć naukowych:

Mój całkowity dorobek naukowy obejmuje:

- 30 artykułów (29 w czasopismach z Thomson Reuters Master Journal List "Lista Filadelfijska"), w tym:
 - 9 przed uzyskaniem stopnia doktora nauk chemicznych
 - 21 po uzyskaniu stopnia doktora nauk chemicznych
 - 2 rozdziały w wieloautorskich monografiach po uzyskaniu stopnia doktora nauk chemicznych
 - 48 materiałów konferencyjnych, w tym
 - 14 przed uzyskaniem stopnia doktora nauk chemicznych

34 po uzyskaniu stopnia doktora nauk chemicznych

- 5 udzielonych patentów po uzyskaniu stopnia doktora nauk chemicznych
- 4 zgłoszenia patentowe po uzyskaniu stopnia doktora nauk chemicznych.

Szczegółowy wykaz wszystkich wymienionych publikacji zamieściłam w załączniku 3, pkt. I-<u>B, II-A, II-C)</u>.

Za twórcze osiągnięcia naukowe uzyskałam cztery indywidualne i jedną zespołową Nagrodę JM Rektora Macierzystej Uczelni (załącznik 3, pkt. II-I, III-D).

W ramach mojej działalności naukowej byłam recenzentem artykułów naukowych na zaproszenie edytorów czasopism znajdujących się w bazie Journal Citation Reports, takich jak: Journal of Alloys and Compounds, Journal of Thermal Analysis and Calorimetry, Polish Journal of Chemical Technology (<u>załącznik 3, pkt. III-P</u>).

7. Działalność dydaktyczna

W trakcie mojego dotychczasowego zatrudnienia w Zachodniopomorskim Uniwersytecie Technologicznym w Szczecinie (od 1.01.2009 następca prawny Politechniki Szczecińskiej) prowadziłam zajęcia dydaktyczne w formie ćwiczeń laboratoryjnych, audytoryjnych i wykładów dla studentów wszystkich kierunków Wydziału Technologii i Inżynierii Chemicznej oraz Wydziału Elektrycznego, kierunku Fizyka Techniczna, a także dla studentów Studiów Podyplomowych z Chemii dla Nauczycieli. W ramach zatrudnienia na stanowisku adiunkta moje pensum dydaktyczne wynosiło i nadal wynosi 240 godzin rocznie. Szczegółowy wykaz rodzaju przeprowadzonych zajęć przedstawiłam w <u>załączniku 3, pkt. III-</u><u>I)</u>.

W latach 2009–2012 byłam opiekunem pięciu prac magisterskich i jednej pracy inżynierskiej, wykonanych w Katedrze Chemii Nieorganicznej i Analitycznej (<u>załącznik 3, pkt.</u> <u>III-J)</u>.

8. Działalność organizacyjna

Niezależnie od pracy badawczej i dydaktycznej w całym okresie mojego zatrudnienia brałam udział w pracach organizacyjnych, początkowo tylko na rzecz Zakładu Chemii Nieorganicznej, a następnie na rzecz Wydziału i Uczelni. Szczegóły mojej działalności organizacyjnej przedstawiłam w załączniku 3, pkt. III-Q).

Grazigna Debrouslia